These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
256 related items for PubMed ID: 2843090
21. Characterization of the arginine deiminase operon of Streptococcus rattus FA-1. Griswold A, Chen YY, Snyder JA, Burne RA. Appl Environ Microbiol; 2004 Mar; 70(3):1321-7. PubMed ID: 15006749 [Abstract] [Full Text] [Related]
22. Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. Poolman B, Driessen AJ, Konings WN. J Bacteriol; 1987 Dec; 169(12):5597-604. PubMed ID: 3119567 [Abstract] [Full Text] [Related]
24. Effects of acidification on growth and glycolysis of Streptococcus sanguis and Streptococcus mutans. Takahashi N, Horiuchi M, Yamada T. Oral Microbiol Immunol; 1997 Apr; 12(2):72-6. PubMed ID: 9227129 [Abstract] [Full Text] [Related]
25. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Huang X, Schulte RM, Burne RA, Nascimento MM. Caries Res; 2015 Apr; 49(2):165-76. PubMed ID: 25634570 [Abstract] [Full Text] [Related]
26. Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Burne RA, Parsons DT, Marquis RE. Infect Immun; 1989 Nov; 57(11):3540-8. PubMed ID: 2530176 [Abstract] [Full Text] [Related]
27. Relationships between arginine degradation, pH and survival in Lactobacillus sakei. Champomier Vergès MC, Zuñiga M, Morel-Deville F, Pérez-Martínez G, Zagorec M, Ehrlich SD. FEMS Microbiol Lett; 1999 Nov 15; 180(2):297-304. PubMed ID: 10556725 [Abstract] [Full Text] [Related]
28. The pathway of arginine catabolism in Giardia intestinalis. Schofield PJ, Edwards MR, Matthews J, Wilson JR. Mol Biochem Parasitol; 1992 Mar 15; 51(1):29-36. PubMed ID: 1314332 [Abstract] [Full Text] [Related]
29. The kinetics of the arginine deiminase pathway in the meat starter culture Lactobacillus sakei CTC 494 are pH-dependent. Rimaux T, Vrancken G, Pothakos V, Maes D, De Vuyst L, Leroy F. Food Microbiol; 2011 May 15; 28(3):597-604. PubMed ID: 21356470 [Abstract] [Full Text] [Related]
30. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Bender GR, Sutton SV, Marquis RE. Infect Immun; 1986 Aug 15; 53(2):331-8. PubMed ID: 3015800 [Abstract] [Full Text] [Related]
31. Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Vander Wauven C, Simon JP, Slos P, Stalon V. Arch Microbiol; 1986 Sep 15; 145(4):386-90. PubMed ID: 3024601 [Abstract] [Full Text] [Related]
32. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. Mercenier A, Simon JP, Vander Wauven C, Haas D, Stalon V. J Bacteriol; 1980 Oct 15; 144(1):159-63. PubMed ID: 6252188 [Abstract] [Full Text] [Related]
36. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci. Vadeboncoeur C, Mayrand D, Trahan L. J Dent Res; 1982 Jan 15; 61(1):60-5. PubMed ID: 6948019 [Abstract] [Full Text] [Related]
38. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. Simon JP, Stalon V. J Bacteriol; 1982 Nov 15; 152(2):676-81. PubMed ID: 6290446 [Abstract] [Full Text] [Related]