These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


94 related items for PubMed ID: 28432821

  • 21. Photo-Fenton oxidation of 3-amino-5-methylisoxazole: a by-product from biological breakdown of some pharmaceutical compounds.
    Souza BM, Marinho BA, Moreira FC, Dezotti MWC, Boaventura RAR, Vilar VJP.
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6195-6204. PubMed ID: 26555882
    [Abstract] [Full Text] [Related]

  • 22. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge.
    De la Cruz N, Giménez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarín C.
    Water Res; 2012 Apr 15; 46(6):1947-57. PubMed ID: 22305640
    [Abstract] [Full Text] [Related]

  • 23. Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H2O2 or S2O82- process.
    Bianco A, Polo López MI, Fernández Ibáñez P, Brigante M, Mailhot G.
    Water Res; 2017 Jul 01; 118():249-260. PubMed ID: 28433695
    [Abstract] [Full Text] [Related]

  • 24. Degradation of DBPs' precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor.
    Moncayo-Lasso A, Pulgarin C, Benítez N.
    Water Res; 2008 Sep 01; 42(15):4125-32. PubMed ID: 18718626
    [Abstract] [Full Text] [Related]

  • 25. Iron oxide-mediated photo-Fenton catalysis in the inactivation of enteric bacteria present in wastewater effluents at neutral pH.
    Fernández L, González-Rodríguez J, Gamallo M, Vargas-Osorio Z, Vázquez-Vázquez C, Piñeiro Y, Rivas J, Feijoo G, Moreira MT.
    Environ Pollut; 2020 Nov 01; 266(Pt 3):115181. PubMed ID: 32683092
    [Abstract] [Full Text] [Related]

  • 26. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.
    Klamerth N, Malato S, Agüera A, Fernández-Alba A, Mailhot G.
    Environ Sci Technol; 2012 Mar 06; 46(5):2885-92. PubMed ID: 22288488
    [Abstract] [Full Text] [Related]

  • 27. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II.
    Maezono T, Tokumura M, Sekine M, Kawase Y.
    Chemosphere; 2011 Mar 06; 82(10):1422-30. PubMed ID: 21146853
    [Abstract] [Full Text] [Related]

  • 28. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.
    Liao P, Al-Ani Y, Malik Ismael Z, Wu X.
    Sci Rep; 2015 Mar 18; 5():9239. PubMed ID: 25783864
    [Abstract] [Full Text] [Related]

  • 29. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol.
    Kavitha V, Palanivelu K.
    Chemosphere; 2004 Jun 18; 55(9):1235-43. PubMed ID: 15081764
    [Abstract] [Full Text] [Related]

  • 30. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y, Liang M, Fang J, Fu J, Chen X.
    Chemosphere; 2017 Sep 18; 182():468-476. PubMed ID: 28521161
    [Abstract] [Full Text] [Related]

  • 31. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G, Madras G.
    Water Res; 2016 Nov 01; 104():168-177. PubMed ID: 27522633
    [Abstract] [Full Text] [Related]

  • 32. Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater.
    Soares PA, Batalha M, Souza SM, Boaventura RA, Vilar VJ.
    J Environ Manage; 2015 Apr 01; 152():120-31. PubMed ID: 25618444
    [Abstract] [Full Text] [Related]

  • 33. Simultaneous photoinduced generation of Fe(2+) and H2O2 in rivers: An indicator for photo-Fenton reaction.
    Mostofa KMG, Sakugawa H.
    J Environ Sci (China); 2016 Sep 01; 47():34-38. PubMed ID: 27593270
    [Abstract] [Full Text] [Related]

  • 34. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC, Xu H, Sahai N.
    Water Res; 2008 Feb 01; 42(3):615-24. PubMed ID: 17919678
    [Abstract] [Full Text] [Related]

  • 35. Solar-Driven H2 O2 Generation From H2 O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts.
    Wang R, Pan K, Han D, Jiang J, Xiang C, Huang Z, Zhang L, Xiang X.
    ChemSusChem; 2016 Sep 08; 9(17):2470-9. PubMed ID: 27484581
    [Abstract] [Full Text] [Related]

  • 36. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z, Bush RT, Liu J.
    Chemosphere; 2013 Nov 08; 93(9):1936-41. PubMed ID: 23880239
    [Abstract] [Full Text] [Related]

  • 37. Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs.
    Cho M, Lee Y, Chung H, Yoon J.
    Appl Environ Microbiol; 2004 Feb 08; 70(2):1129-34. PubMed ID: 14766597
    [Abstract] [Full Text] [Related]

  • 38. Ferrioxalate-assisted solar photo-Fenton degradation of a herbicide at pH conditions close to neutrality.
    Conte LO, Schenone AV, Alfano OM.
    Environ Sci Pollut Res Int; 2017 Mar 08; 24(7):6205-6212. PubMed ID: 26971797
    [Abstract] [Full Text] [Related]

  • 39. [Enhanced remediation of 4-chloronitrobenzene contaminated groundwater with nanoscale zero-valence iron (nZVI) catalyzed hydrogen peroxide (H2O2)].
    Fu RB.
    Huan Jing Ke Xue; 2014 Apr 08; 35(4):1351-7. PubMed ID: 24946587
    [Abstract] [Full Text] [Related]

  • 40. A Model Study of the Photochemical Fate of As(III) in Paddy-Water.
    Carena L, Vione D.
    Molecules; 2017 Mar 11; 22(3):. PubMed ID: 28287457
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.