These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


266 related items for PubMed ID: 28433027

  • 1. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation.
    Lyu Y, Xiang N, Zhu X, Narsimhan G.
    J Chem Phys; 2017 Apr 21; 146(15):155101. PubMed ID: 28433027
    [Abstract] [Full Text] [Related]

  • 2. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides.
    Miyazaki Y, Okazaki S, Shinoda W.
    Biochim Biophys Acta Biomembr; 2019 Jul 01; 1861(7):1409-1419. PubMed ID: 30885804
    [Abstract] [Full Text] [Related]

  • 3. Melittin creates transient pores in a lipid bilayer: results from computer simulations.
    Santo KP, Irudayam SJ, Berkowitz ML.
    J Phys Chem B; 2013 May 02; 117(17):5031-42. PubMed ID: 23534858
    [Abstract] [Full Text] [Related]

  • 4. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores.
    Sun D, Forsman J, Woodward CE.
    Langmuir; 2015 Sep 01; 31(34):9388-401. PubMed ID: 26267389
    [Abstract] [Full Text] [Related]

  • 5. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J, Zhao C, Liang G, Zhang M, Zheng J.
    J Chem Inf Model; 2013 Dec 23; 53(12):3280-96. PubMed ID: 24279498
    [Abstract] [Full Text] [Related]

  • 6. Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin.
    Zhou L, Narsimhan G, Wu X, Du F.
    Colloids Surf B Biointerfaces; 2014 Nov 01; 123():419-28. PubMed ID: 25306255
    [Abstract] [Full Text] [Related]

  • 7. Organizations of melittin peptides after spontaneous penetration into cell membranes.
    Sun L, Wang S, Tian F, Zhu H, Dai L.
    Biophys J; 2022 Nov 15; 121(22):4368-4381. PubMed ID: 36199252
    [Abstract] [Full Text] [Related]

  • 8. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.
    Wu X, Singh AK, Wu X, Lyu Y, Bhunia AK, Narsimhan G.
    Colloids Surf B Biointerfaces; 2016 Jul 01; 143():194-205. PubMed ID: 27011349
    [Abstract] [Full Text] [Related]

  • 9. The structure of a melittin-stabilized pore.
    Leveritt JM, Pino-Angeles A, Lazaridis T.
    Biophys J; 2015 May 19; 108(10):2424-2426. PubMed ID: 25992720
    [Abstract] [Full Text] [Related]

  • 10. Dynamic Structure and Orientation of Melittin Bound to Acidic Lipid Bilayers, As Revealed by Solid-State NMR and Molecular Dynamics Simulation.
    Norisada K, Javkhlantugs N, Mishima D, Kawamura I, Saitô H, Ueda K, Naito A.
    J Phys Chem B; 2017 Mar 02; 121(8):1802-1811. PubMed ID: 28165239
    [Abstract] [Full Text] [Related]

  • 11. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HH, Ruaan RC.
    J Mol Biol; 2009 Sep 25; 392(3):837-54. PubMed ID: 19576903
    [Abstract] [Full Text] [Related]

  • 12. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D, Leontiadou H, Mark AE, Marrink SJ.
    Biochim Biophys Acta; 2008 Oct 25; 1778(10):2308-17. PubMed ID: 18602889
    [Abstract] [Full Text] [Related]

  • 13. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y, Fitriyanti M, Narsimhan G.
    Colloids Surf B Biointerfaces; 2019 Jan 01; 173():121-127. PubMed ID: 30278360
    [Abstract] [Full Text] [Related]

  • 14. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N, Shai Y.
    Biochemistry; 2003 Jan 21; 42(2):458-66. PubMed ID: 12525173
    [Abstract] [Full Text] [Related]

  • 15. Molecular dynamics simulations of a mixed DOPC/DOPG bilayer.
    Balali-Mood K, Harroun TA, Bradshaw JP.
    Eur Phys J E Soft Matter; 2003 Nov 21; 12 Suppl 1():S135-40. PubMed ID: 15011033
    [Abstract] [Full Text] [Related]

  • 16. Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study.
    Miyazaki Y, Shinoda W.
    Biochim Biophys Acta Biomembr; 2022 Sep 01; 1864(9):183955. PubMed ID: 35526599
    [Abstract] [Full Text] [Related]

  • 17. Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers.
    Upadhyay SK, Wang Y, Zhao T, Ulmschneider JP.
    J Membr Biol; 2015 Jun 01; 248(3):497-503. PubMed ID: 25963936
    [Abstract] [Full Text] [Related]

  • 18. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state.
    Irudayam SJ, Pobandt T, Berkowitz ML.
    J Phys Chem B; 2013 Oct 31; 117(43):13457-63. PubMed ID: 24117276
    [Abstract] [Full Text] [Related]

  • 19. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF, Hong CK, Wang Y, Tieleman DP.
    J Chem Theory Comput; 2016 Sep 13; 12(9):4524-33. PubMed ID: 27529120
    [Abstract] [Full Text] [Related]

  • 20. Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations.
    Richardson JD, Van Lehn RC.
    J Phys Chem B; 2024 Sep 12; 128(36):8737-8752. PubMed ID: 39207202
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.