These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 28439838
1. MiRNA Quantitation with Microelectrode Sensors Enabled by Enzymeless Electrochemical Signal Amplification. Wang T, Wang G, Merlin D, Viennois E. Methods Mol Biol; 2017; 1580():249-263. PubMed ID: 28439838 [Abstract] [Full Text] [Related]
2. Quantification of MicroRNAs or Viral RNAs with Microelectrode Sensors Enabled by Electrochemical Signal Amplification. Ake S, Kamila S, Wang G. Methods Mol Biol; 2023; 2630():117-133. PubMed ID: 36689180 [Abstract] [Full Text] [Related]
3. Microelectrode miRNA sensors enabled by enzymeless electrochemical signal amplification. Wang T, Viennois E, Merlin D, Wang G. Anal Chem; 2015 Aug 18; 87(16):8173-80. PubMed ID: 26241158 [Abstract] [Full Text] [Related]
4. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling. Xia N, Zhang Y, Wei X, Huang Y, Liu L. Anal Chim Acta; 2015 Jun 09; 878():95-101. PubMed ID: 26002330 [Abstract] [Full Text] [Related]
5. Bimetallic Pd-Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates. Cheng FF, Zhang JJ, He TT, Shi JJ, Abdel-Halim ES, Zhu JJ. Analyst; 2014 Aug 21; 139(16):3860-5. PubMed ID: 24976373 [Abstract] [Full Text] [Related]
6. Ultrasensitive electrochemical detection of miRNA-21 by using an iridium(III) complex as catalyst. Miao X, Wang W, Kang T, Liu J, Shiu KK, Leung CH, Ma DL. Biosens Bioelectron; 2016 Dec 15; 86():454-458. PubMed ID: 27424263 [Abstract] [Full Text] [Related]
7. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification. Xia N, Liu K, Zhou Y, Li Y, Yi X. Int J Nanomedicine; 2017 Dec 15; 12():5013-5022. PubMed ID: 28761341 [Abstract] [Full Text] [Related]
15. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Johnson BN, Mutharasan R. Analyst; 2014 Apr 07; 139(7):1576-88. PubMed ID: 24501736 [Abstract] [Full Text] [Related]
16. Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array. Aggarwal A, Hu M, Fritsch I. Anal Bioanal Chem; 2013 Apr 07; 405(11):3859-69. PubMed ID: 23397090 [Abstract] [Full Text] [Related]
19. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case. Niu X, Li Y, Tang J, Hu Y, Zhao H, Lan M. Biosens Bioelectron; 2014 Jan 15; 51():22-8. PubMed ID: 23920092 [Abstract] [Full Text] [Related]
20. Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Guo WJ, Wu Z, Yang XY, Pang DW, Zhang ZL. Biosens Bioelectron; 2019 Apr 15; 131():267-273. PubMed ID: 30849726 [Abstract] [Full Text] [Related] Page: [Next] [New Search]