These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, Zhang J, Liu L. Biosens Bioelectron; 2017 Aug 15; 94():235-242. PubMed ID: 28285201 [Abstract] [Full Text] [Related]
29. Poly(A) Extensions of miRNAs for Amplification-Free Electrochemical Detection on Screen-Printed Gold Electrodes. Koo KM, Carrascosa LG, Shiddiky MJ, Trau M. Anal Chem; 2016 Feb 16; 88(4):2000-5. PubMed ID: 26814930 [Abstract] [Full Text] [Related]
30. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification. Liu S, Lin Y, Liu T, Cheng C, Wei W, Wang L, Li F. Biosens Bioelectron; 2014 Jun 15; 56():12-8. PubMed ID: 24445068 [Abstract] [Full Text] [Related]
31. Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Sun X, Wang H, Jian Y, Lan F, Zhang L, Liu H, Ge S, Yu J. Biosens Bioelectron; 2018 May 15; 105():218-225. PubMed ID: 29412946 [Abstract] [Full Text] [Related]
32. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Feng L, Sivanesan A, Lyu Z, Offenhäusser A, Mayer D. Biosens Bioelectron; 2015 Apr 15; 66():62-8. PubMed ID: 25460883 [Abstract] [Full Text] [Related]
33. Copper- and Cobalt-Codoped CeO2 Nanospheres with Abundant Oxygen Vacancies as Highly Efficient Electrocatalysts for Dual-Mode Electrochemical Sensing of MicroRNA. Xue S, Li Q, Wang L, You W, Zhang J, Che R. Anal Chem; 2019 Feb 19; 91(4):2659-2666. PubMed ID: 30652475 [Abstract] [Full Text] [Related]
35. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Tian Q, Wang Y, Deng R, Lin L, Liu Y, Li J. Nanoscale; 2015 Jan 21; 7(3):987-93. PubMed ID: 25470558 [Abstract] [Full Text] [Related]
36. One-step, ultrasensitive, and electrochemical assay of microRNAs based on T7 exonuclease assisted cyclic enzymatic amplification. Wang M, Fu Z, Li B, Zhou Y, Yin H, Ai S. Anal Chem; 2014 Jun 17; 86(12):5606-10. PubMed ID: 24893976 [Abstract] [Full Text] [Related]
38. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H. Biosens Bioelectron; 2016 Mar 15; 77():99-106. PubMed ID: 26397420 [Abstract] [Full Text] [Related]
39. Silver nano-reporter enables simple and ultrasensitive profiling of microRNAs on a nanoflower-like microelectrode array on glass. Gan Y, Zhou M, Ma H, Gong J, Fung SY, Huang X, Yang H. J Nanobiotechnology; 2022 Oct 23; 20(1):456. PubMed ID: 36274120 [Abstract] [Full Text] [Related]
40. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification. Yu Y, Chen Z, Shi L, Yang F, Pan J, Zhang B, Sun D. Anal Chem; 2014 Aug 19; 86(16):8200-5. PubMed ID: 25054588 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]