These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 28439996

  • 1. Energy dispersive spectroscopy-scanning transmission electron microscope observations of free radical production in human polymorphonuclear leukocytes phagocytosing non-opsonized Tannerella forsythia.
    Moriguchi K, Hasegawa Y, Higuchi N, Murakami Y, Yoshimura F, Nakata K, Honda M.
    Microsc Res Tech; 2017 Jun; 80(6):555-562. PubMed ID: 28439996
    [Abstract] [Full Text] [Related]

  • 2. Independent trafficking of flavocytochrome b558 and myeloperoxidase to phagosomes during phagocytosis visualised by energy-filtering and energy-dispersive spectroscopy-scanning transmission electron microscopy.
    Moriguchi K.
    J Microsc; 2018 Mar; 269(3):338-345. PubMed ID: 29125617
    [Abstract] [Full Text] [Related]

  • 3. Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia.
    Chinthamani S, Settem RP, Honma K, Kay JG, Sharma A.
    PLoS One; 2017 Mar; 12(3):e0173394. PubMed ID: 28264048
    [Abstract] [Full Text] [Related]

  • 4. Immunocytochemical approach for surface layer proteins of freeze-substituted Tannerella forsythensis by energy-filtering transmission electron microscopy.
    Moriguchi K, Jogahara T, Kurihara T, Iwami J, Higuchi N, Murakami Y, Maeda H, Yoshimura F, Nakamura H, Ohno N.
    Okajimas Folia Anat Jpn; 2008 Aug; 85(2):67-72. PubMed ID: 18975614
    [Abstract] [Full Text] [Related]

  • 5. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.
    Moriguchi K, Mitamura Y, Iwami J, Hasegawa Y, Higuchi N, Murakami Y, Maeda H, Yoshimura F, Nakamura H, Ohno N.
    Biotech Histochem; 2012 Nov; 87(8):485-93. PubMed ID: 22984898
    [Abstract] [Full Text] [Related]

  • 6. Immune response profiling of primary monocytes and oral keratinocytes to different Tannerella forsythia strains and their cell surface mutants.
    Bloch S, Zwicker S, Bostanci N, Sjöling Å, Boström EA, Belibasakis GN, Schäffer C.
    Mol Oral Microbiol; 2018 Apr; 33(2):155-167. PubMed ID: 29235255
    [Abstract] [Full Text] [Related]

  • 7. Electron microscopic identification of hydrogen peroxide detected in fixed human polymorphonuclear leukocytes during phagocytosis.
    Moriguchi K, Ohno N.
    Okajimas Folia Anat Jpn; 2014 Apr; 90(4):97-100. PubMed ID: 24815108
    [Abstract] [Full Text] [Related]

  • 8. Tannerella forsythia GroEL induces inflammatory bone resorption and synergizes with interleukin-17.
    Jung YJ, Choi YJ, An SJ, Lee HR, Jun HK, Choi BK.
    Mol Oral Microbiol; 2017 Aug; 32(4):301-313. PubMed ID: 27484636
    [Abstract] [Full Text] [Related]

  • 9. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia.
    Hieke C, Kriebel K, Engelmann R, Müller-Hilke B, Lang H, Kreikemeyer B.
    Sci Rep; 2016 Dec 15; 6():39096. PubMed ID: 27974831
    [Abstract] [Full Text] [Related]

  • 10. Purification of Tannerella forsythia Surface-Layer (S-Layer) Proteins.
    Chinthamani S, Settem PR, Honma K, Nakajima T, Sharma A.
    Methods Mol Biol; 2021 Dec 15; 2210():135-142. PubMed ID: 32815134
    [Abstract] [Full Text] [Related]

  • 11. Potential of the Tannerella forsythia S-layer to delay the immune response.
    Sekot G, Posch G, Messner P, Matejka M, Rausch-Fan X, Andrukhov O, Schäffer C.
    J Dent Res; 2011 Jan 15; 90(1):109-14. PubMed ID: 20929722
    [Abstract] [Full Text] [Related]

  • 12. Characterizing the S-layer structure and anti-S-layer antibody recognition on intact Tannerella forsythia cells by scanning probe microscopy and small angle X-ray scattering.
    Oh YJ, Sekot G, Duman M, Chtcheglova L, Messner P, Peterlik H, Schäffer C, Hinterdorfer P.
    J Mol Recognit; 2013 Nov 15; 26(11):542-9. PubMed ID: 24089361
    [Abstract] [Full Text] [Related]

  • 13. Role of hydroxyl radical in polymorphonuclear leukocyte-mediated bactericidal activity.
    Rosen H.
    Agents Actions Suppl; 1980 Nov 15; 7():180-4. PubMed ID: 6264770
    [Abstract] [Full Text] [Related]

  • 14. Intracellular production and extracellular release of oxygen radicals by PMNs and oxidative stress on PMNs during phagocytosis of periodontopathic bacteria.
    Katsuragi H, Ohtake M, Kurasawa I, Saito K.
    Odontology; 2003 Sep 15; 91(1):13-8. PubMed ID: 14505184
    [Abstract] [Full Text] [Related]

  • 15. Elemental analysis of sunflower cataract in Wilson's disease: a study using scanning transmission electron microscopy and energy dispersive spectroscopy.
    Jang HJ, Kim JM, Choi CY.
    Exp Eye Res; 2014 Apr 15; 121():58-65. PubMed ID: 24534570
    [Abstract] [Full Text] [Related]

  • 16. Improved light microscopic demonstration of D-amino acid oxidase activity in cryotome sections using cerium ions as capturing and amplifying agent--the Ce/Ce-H2O2-DAB procedure.
    Halbhuber KJ, Feuerstein H, Zimmermann N, Klinger M, Kalicharan D, Hupfer U.
    Cell Mol Biol; 1991 Apr 15; 37(3):279-94. PubMed ID: 1682047
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Localization of D-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes.
    Robinson JM, Briggs RT, Karnovsky MJ.
    J Cell Biol; 1978 Apr 15; 77(1):59-71. PubMed ID: 26690
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.