These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


410 related items for PubMed ID: 28450391

  • 21. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide.
    Fang J, Beattie DS.
    Free Radic Biol Med; 2003 Feb 15; 34(4):478-88. PubMed ID: 12566073
    [Abstract] [Full Text] [Related]

  • 22. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ, Doroshow JH.
    J Biol Chem; 1986 Mar 05; 261(7):3060-7. PubMed ID: 3456345
    [Abstract] [Full Text] [Related]

  • 23. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction.
    Starnes JW, Barnes BD, Olsen ME.
    J Appl Physiol (1985); 2007 May 05; 102(5):1793-8. PubMed ID: 17303708
    [Abstract] [Full Text] [Related]

  • 24. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
    Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ.
    Am J Physiol Cell Physiol; 2008 Feb 05; 294(2):C460-6. PubMed ID: 18077608
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen species generation.
    Aldakkak M, Stowe DF, Dash RK, Camara AK.
    Free Radic Biol Med; 2013 Mar 05; 56():193-203. PubMed ID: 23010495
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J, Engstová H, Ježek P.
    Biochim Biophys Acta Bioenerg; 2017 Sep 05; 1858(9):750-762. PubMed ID: 28554565
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Effects of copper and temperature on heart mitochondrial hydrogen peroxide production.
    Isei MO, Kamunde C.
    Free Radic Biol Med; 2020 Feb 01; 147():114-128. PubMed ID: 31825803
    [Abstract] [Full Text] [Related]

  • 32. Redox signaling in the growth and development of colonial hydroids.
    Blackstone NW.
    J Exp Biol; 2003 Feb 01; 206(Pt 4):651-8. PubMed ID: 12517982
    [Abstract] [Full Text] [Related]

  • 33. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.
    Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G.
    Biochim Biophys Acta; 2009 May 01; 1787(5):384-92. PubMed ID: 19059197
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM, Van Buiten CB, Ramanathan R, Mancini RA.
    Meat Sci; 2015 Jul 01; 105():89-92. PubMed ID: 25828162
    [Abstract] [Full Text] [Related]

  • 37. Reprint of: Production of Superoxide Radicals and Hydrogen Peroxide by NADH- Ubiquinone Reductase and Ubiquinol-Cytochrome c Reductase from Beef-Heart Mitochondria.
    Cadenas E, Boveris A, Ian Ragan C, O M Stoppani A.
    Arch Biochem Biophys; 2022 Sep 15; 726():109231. PubMed ID: 35660298
    [Abstract] [Full Text] [Related]

  • 38. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.
    Bonke E, Siebels I, Zwicker K, Dröse S.
    Free Radic Biol Med; 2016 Oct 15; 99():43-53. PubMed ID: 27474449
    [Abstract] [Full Text] [Related]

  • 39. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I, Tretter L, Adam-Vizi V.
    Neurochem Res; 2003 Oct 15; 28(10):1575-81. PubMed ID: 14570403
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.