These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


423 related items for PubMed ID: 28454036

  • 21. Electricity generation: options for reduction in carbon emissions.
    Whittington HW.
    Philos Trans A Math Phys Eng Sci; 2002 Aug 15; 360(1797):1653-68. PubMed ID: 12460490
    [Abstract] [Full Text] [Related]

  • 22. Emission scenario of non-CO2 gases from energy activities and other sources in China.
    Jiang K, Hu X.
    Sci China C Life Sci; 2005 Sep 15; 48 Suppl 2():955-64. PubMed ID: 20549450
    [Abstract] [Full Text] [Related]

  • 23. Study of the impact of industrial restructuring on the intensity of air pollutant and greenhouse gas emissions from high-energy-consuming sectors: empirical data from China.
    Wang H, Luo J.
    Environ Sci Pollut Res Int; 2023 Jan 15; 30(3):7801-7812. PubMed ID: 36044143
    [Abstract] [Full Text] [Related]

  • 24. Effects of biodiesel made from swine and chicken fat residues on carbon monoxide, carbon dioxide, and nitrogen oxide emissions.
    Feddern V, Cunha Junior A, De Prá MC, Busi da Silva ML, Nicoloso RDS, Higarashi MM, Coldebella A, de Abreu PG.
    J Air Waste Manag Assoc; 2017 Jul 15; 67(7):754-762. PubMed ID: 28081386
    [Abstract] [Full Text] [Related]

  • 25. The role of renewable and non-renewable energy consumption in CO2 emissions: a disaggregate analysis of Pakistan.
    Zaidi SAH, Danish, Hou F, Mirza FM.
    Environ Sci Pollut Res Int; 2018 Nov 15; 25(31):31616-31629. PubMed ID: 30206833
    [Abstract] [Full Text] [Related]

  • 26. Greenhouse gas emissions and energy exchange in wet and dry season rice: eddy covariance-based approach.
    Swain CK, Nayak AK, Bhattacharyya P, Chatterjee D, Chatterjee S, Tripathi R, Singh NR, Dhal B.
    Environ Monit Assess; 2018 Jun 25; 190(7):423. PubMed ID: 29938374
    [Abstract] [Full Text] [Related]

  • 27. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast.
    Gomez J, Vidon P, Gross J, Beier C, Caputo J, Mitchell M.
    Environ Monit Assess; 2016 May 25; 188(5):295. PubMed ID: 27085717
    [Abstract] [Full Text] [Related]

  • 28. Air quality co-benefits of subnational carbon policies.
    Thompson TM, Rausch S, Saari RK, Selin NE.
    J Air Waste Manag Assoc; 2016 Oct 25; 66(10):988-1002. PubMed ID: 27216236
    [Abstract] [Full Text] [Related]

  • 29. Predicting carbon dioxide emissions in the United States of America using machine learning algorithms.
    Chukwunonso BP, Al-Wesabi I, Shixiang L, AlSharabi K, Al-Shamma'a AA, Farh HMH, Saeed F, Kandil T, Al-Shaalan AM.
    Environ Sci Pollut Res Int; 2024 May 25; 31(23):33685-33707. PubMed ID: 38691282
    [Abstract] [Full Text] [Related]

  • 30. The Climate Mitigation Challenge-Where Do We Stand?
    Princiotta FT.
    J Air Waste Manag Assoc; 2021 Oct 25; 71(10):1234-1250. PubMed ID: 34233128
    [Abstract] [Full Text] [Related]

  • 31. Benefits on public health from transport-related greenhouse gas mitigation policies in Southeastern European cities.
    Sarigiannis DA, Kontoroupis P, Nikolaki S, Gotti A, Chapizanis D, Karakitsios S.
    Sci Total Environ; 2017 Feb 01; 579():1427-1438. PubMed ID: 27919555
    [Abstract] [Full Text] [Related]

  • 32. Potential of land use activities to offset road traffic greenhouse gas emissions in Central Spain.
    Enríquez-de-Salamanca Á, Martín-Aranda RM, Díaz-Sierra R.
    Sci Total Environ; 2017 Jul 15; 590-591():215-225. PubMed ID: 28259437
    [Abstract] [Full Text] [Related]

  • 33. Climate change during the COVID-19 outbreak: scoping future perspectives.
    Usman M, Husnain M, Riaz A, Riaz A, Ali Y.
    Environ Sci Pollut Res Int; 2021 Sep 15; 28(35):49302-49313. PubMed ID: 33934308
    [Abstract] [Full Text] [Related]

  • 34. Towards sustainable and net-zero cities: A review of environmental modelling and monitoring tools for optimizing emissions reduction strategies for improved air quality in urban areas.
    O'Regan AC, Nyhan MM.
    Environ Res; 2023 Aug 15; 231(Pt 3):116242. PubMed ID: 37244499
    [Abstract] [Full Text] [Related]

  • 35. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F, Agostini A, Boulamanti AK, Giuntoli J, Amaducci S.
    Sci Total Environ; 2014 May 15; 481():196-208. PubMed ID: 24598150
    [Abstract] [Full Text] [Related]

  • 36. Did policies to abate atmospheric emissions from traffic have a positive effect in London?
    Font A, Fuller GW.
    Environ Pollut; 2016 Nov 15; 218():463-474. PubMed ID: 27450415
    [Abstract] [Full Text] [Related]

  • 37. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi.
    Reynolds CC, Kandlikar M.
    Environ Sci Technol; 2008 Aug 15; 42(16):5860-5. PubMed ID: 18767636
    [Abstract] [Full Text] [Related]

  • 38. Climate and air-quality benefits of a realistic phase-out of fossil fuels.
    Shindell D, Smith CJ.
    Nature; 2019 Sep 15; 573(7774):408-411. PubMed ID: 31534245
    [Abstract] [Full Text] [Related]

  • 39. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos.
    Vilaysouk X, Babel S.
    Environ Technol; 2017 Jul 15; 38(13-14):1629-1637. PubMed ID: 28278091
    [Abstract] [Full Text] [Related]

  • 40. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.
    Campbell P, Zhang Y, Yan F, Lu Z, Streets D.
    Environ Pollut; 2018 Jul 15; 238():918-930. PubMed ID: 29684896
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.