These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


346 related items for PubMed ID: 28459979

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Optic Nerve Head and Retinal Abnormalities Associated with Congenital Fibrosis of the Extraocular Muscles.
    Thomas MG, Maconachie GDE, Kuht HJ, Chan WM, Sheth V, Hisaund M, McLean RJ, Barry B, Al-Diri B, Proudlock FA, Tu Z, Engle EC, Gottlob I.
    Int J Mol Sci; 2021 Mar 04; 22(5):. PubMed ID: 33806565
    [Abstract] [Full Text] [Related]

  • 5. Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A.
    Demer JL, Clark RA, Engle EC.
    Invest Ophthalmol Vis Sci; 2005 Feb 04; 46(2):530-9. PubMed ID: 15671279
    [Abstract] [Full Text] [Related]

  • 6. Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome.
    Nugent AA, Park JG, Wei Y, Tenney AP, Gilette NM, DeLisle MM, Chan WM, Cheng L, Engle EC.
    J Clin Invest; 2017 May 01; 127(5):1664-1682. PubMed ID: 28346224
    [Abstract] [Full Text] [Related]

  • 7. The Rac-GAP alpha2-Chimaerin Signals via CRMP2 and Stathmins in the Development of the Ocular Motor System.
    Carretero-Rodriguez L, Guðjónsdóttir R, Poparic I, Reilly ML, Chol M, Bianco IH, Chiapello M, Feret R, Deery MJ, Guthrie S.
    J Neurosci; 2021 Aug 04; 41(31):6652-6672. PubMed ID: 34168008
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Congenital fibrosis of extraocular muscle type 1A due to KIF21A mutation: first case report from Hong Kong.
    Luk HM, Lo IF, Lai CW, Ma LC, Tong TM, Chan DH, Lam ST.
    Hong Kong Med J; 2013 Apr 04; 19(2):182-5. PubMed ID: 23535681
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Congenital cranial dysinnervation disorders: a concept in evolution.
    Bosley TM, Abu-Amero KK, Oystreck DT.
    Curr Opin Ophthalmol; 2013 Sep 04; 24(5):398-406. PubMed ID: 23872818
    [Abstract] [Full Text] [Related]

  • 15. Axons get ahead: Insights into axon guidance and congenital cranial dysinnervation disorders.
    Chilton JK, Guthrie S.
    Dev Neurobiol; 2017 Jul 04; 77(7):861-875. PubMed ID: 28033651
    [Abstract] [Full Text] [Related]

  • 16. Congenital cranial dysinnervation disorder with homozygous KIF26A variant.
    Gregg AT, Gateman T, Whitman MC.
    J AAPOS; 2024 Aug 04; 28(4):103951. PubMed ID: 38866323
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A novel de novo KIF21A mutation in a patient with congenital fibrosis of the extraocular muscles and Möbius syndrome.
    Ali Z, Xing C, Anwar D, Itani K, Weakley D, Gong X, Pascual JM, Mootha VV.
    Mol Vis; 2014 Aug 04; 20():368-75. PubMed ID: 24715754
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.