These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
3380 related items for PubMed ID: 28463613
1. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D, Zieriacks A, Jansen O, Fisahn C, Sczesny-Kaiser M, Wessling M, Meindl RC, Schildhauer TA, Aach M. Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [Abstract] [Full Text] [Related]
2. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RCh, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA. Spine J; 2014 Dec 01; 14(12):2847-53. PubMed ID: 24704677 [Abstract] [Full Text] [Related]
3. Feasibility, safety, and functional outcomes using the neurological controlled Hybrid Assistive Limb exoskeleton (HAL®) following acute incomplete and complete spinal cord injury - Results of 50 patients. Aach M, Schildhauer TA, Zieriacks A, Jansen O, Weßling M, Brinkemper A, Grasmücke D. J Spinal Cord Med; 2023 Jul 01; 46(4):574-581. PubMed ID: 37083596 [Abstract] [Full Text] [Related]
4. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients. Jansen O, Grasmuecke D, Meindl RC, Tegenthoff M, Schwenkreis P, Sczesny-Kaiser M, Wessling M, Schildhauer TA, Fisahn C, Aach M. World Neurosurg; 2018 Feb 01; 110():e73-e78. PubMed ID: 29081392 [Abstract] [Full Text] [Related]
5. Rehabilitation of Acute Vs. Chronic Patients With Spinal Cord Injury With a Neurologically Controlled Hybrid Assistive Limb Exoskeleton: Is There a Difference in Outcome? Zieriacks A, Aach M, Brinkemper A, Koller D, Schildhauer TA, Grasmücke D. Front Neurorobot; 2021 Feb 01; 15():728327. PubMed ID: 34776919 [Abstract] [Full Text] [Related]
6. The Hybrid Assistive Limb® intervention for a postoperative patient with spinal dural arteriovenous fistula and chronic spinal cord injury: A case study. Shimizu Y, Nakai K, Kadone H, Yamauchi S, Kubota S, Ueno T, Marushima A, Hiruta K, Endo A, Kawamoto H, Matsumura A, Sankai Y, Hada Y, Yamazaki M. J Spinal Cord Med; 2018 Nov 01; 41(6):710-717. PubMed ID: 28552031 [Abstract] [Full Text] [Related]
7. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study. Rupp R, Schließmann D, Plewa H, Schuld C, Gerner HJ, Weidner N, Hofer EP, Knestel M. PLoS One; 2015 Nov 01; 10(3):e0119167. PubMed ID: 25803577 [Abstract] [Full Text] [Related]
8. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Okawara H, Sawada T, Matsubayashi K, Sugai K, Tsuji O, Nagoshi N, Matsumoto M, Nakamura M. Spinal Cord; 2020 May 01; 58(5):520-527. PubMed ID: 31831847 [Abstract] [Full Text] [Related]
9. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study (.). Cruciger O, Schildhauer TA, Meindl RC, Tegenthoff M, Schwenkreis P, Citak M, Aach M. Disabil Rehabil Assist Technol; 2016 Aug 01; 11(6):529-34. PubMed ID: 25382234 [Abstract] [Full Text] [Related]
10. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Arch Phys Med Rehabil; 2005 Apr 01; 86(4):672-80. PubMed ID: 15827916 [Abstract] [Full Text] [Related]
11. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Buehner JJ, Forrest GF, Schmidt-Read M, White S, Tansey K, Basso DM. Arch Phys Med Rehabil; 2012 Sep 01; 93(9):1530-40. PubMed ID: 22920450 [Abstract] [Full Text] [Related]
12. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS. J Neuroeng Rehabil; 2014 Mar 04; 11():26. PubMed ID: 24594284 [Abstract] [Full Text] [Related]
13. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study. Lam T, Pauhl K, Ferguson A, Malik RN, BKin, Krassioukov A, Eng JJ. J Rehabil Res Dev; 2015 Mar 04; 52(1):113-29. PubMed ID: 26230667 [Abstract] [Full Text] [Related]
14. A Consecutive 25-Week Program of Gait Training, Using the Alternating Hybrid Assistive Limb (HAL®) Robot and Conventional Training, and Its Effects on the Walking Ability of a Patient with Chronic Thoracic Spinal Cord Injury: A Single Case Reversal Design. Kanazawa A, Yoshikawa K, Koseki K, Takeuchi R, Mutsuzaki H. Medicina (Kaunas); 2019 Nov 18; 55(11):. PubMed ID: 31752225 [Abstract] [Full Text] [Related]
15. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, Muñoz-González A, Pérez-Mateos G, González-Valdizán E, Martín JL. Neurorehabil Neural Repair; 2012 Nov 18; 26(9):1058-63. PubMed ID: 22699827 [Abstract] [Full Text] [Related]
16. Improved Physiological Gait in Acute and Chronic SCI Patients After Training With Wearable Cyborg Hybrid Assistive Limb. Brinkemper A, Aach M, Grasmücke D, Jettkant B, Rosteius T, Dudda M, Yilmaz E, Schildhauer TA. Front Neurorobot; 2021 Nov 18; 15():723206. PubMed ID: 34512302 [Abstract] [Full Text] [Related]
17. Hybrid Assistive Limb Functional Treatment for a Patient with Chronic Incomplete Cervical Spinal Cord Injury. Soma Y, Kubota S, Kadone H, Shimizu Y, Takahashi H, Hada Y, Koda M, Sankai Y, Yamazaki M. Int Med Case Rep J; 2021 Nov 18; 14():413-420. PubMed ID: 34188556 [Abstract] [Full Text] [Related]
18. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, León N, Gómez B, Samuelsson K, Antepohl W, Holmström U, Marklund N, Glott T, Opheim A, Benito J, Murillo N, Nachtegaal J, Faber W, Biering-Sørensen F. Spinal Cord; 2018 Feb 18; 56(2):106-116. PubMed ID: 29105657 [Abstract] [Full Text] [Related]
19. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, Furman K, Bialek A, Prokup S, Carlow J, VanHiel L, Kemp L, Musick D, Campo M, Jayaraman A. Spinal Cord; 2022 Jun 18; 60(6):522-532. PubMed ID: 35094007 [Abstract] [Full Text] [Related]
20. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez R, Murillo N, Costa U, Tormos JM, Vidal-Samsó J, Valls-Solé J, European Multicenter Study about Human Spinal Cord Injury Study Group, Medina J. Arch Phys Med Rehabil; 2012 Mar 18; 93(3):404-12. PubMed ID: 22209475 [Abstract] [Full Text] [Related] Page: [Next] [New Search]