These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 28468956
1. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p. Jasnovidova O, Krejcikova M, Kubicek K, Stefl R. EMBO Rep; 2017 Jun; 18(6):906-913. PubMed ID: 28468956 [Abstract] [Full Text] [Related]
2. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Nemec CM, Yang F, Gilmore JM, Hintermair C, Ho YH, Tseng SC, Heidemann M, Zhang Y, Florens L, Gasch AP, Eick D, Washburn MP, Varani G, Ansari AZ. Proc Natl Acad Sci U S A; 2017 May 16; 114(20):E3944-E3953. PubMed ID: 28465432 [Abstract] [Full Text] [Related]
3. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. Heidemann M, Eick D. RNA Biol; 2012 Sep 16; 9(9):1144-6. PubMed ID: 22960391 [Abstract] [Full Text] [Related]
4. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. Pineda G, Shen Z, de Albuquerque CP, Reynoso E, Chen J, Tu CC, Tang W, Briggs S, Zhou H, Wang JY. BMC Res Notes; 2015 Oct 29; 8():616. PubMed ID: 26515650 [Abstract] [Full Text] [Related]
5. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Heidemann M, Hintermair C, Voß K, Eick D. Biochim Biophys Acta; 2013 Jan 29; 1829(1):55-62. PubMed ID: 22982363 [Abstract] [Full Text] [Related]
6. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL. J Biol Chem; 2004 Jun 11; 279(24):24957-64. PubMed ID: 15047695 [Abstract] [Full Text] [Related]
7. The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Yurko NM, Manley JL. Transcription; 2018 Jun 11; 9(1):30-40. PubMed ID: 28771071 [Abstract] [Full Text] [Related]
8. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. Heo DH, Yoo I, Kong J, Lidschreiber M, Mayer A, Choi BY, Hahn Y, Cramer P, Buratowski S, Kim M. J Biol Chem; 2013 Dec 20; 288(51):36676-90. PubMed ID: 24196955 [Abstract] [Full Text] [Related]
9. Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner. Nemec CM, Singh AK, Ali A, Tseng SC, Syal K, Ringelberg KJ, Ho YH, Hintermair C, Ahmad MF, Kar RK, Gasch AP, Akhtar MS, Eick D, Ansari AZ. Nat Chem Biol; 2019 Feb 20; 15(2):123-131. PubMed ID: 30598543 [Abstract] [Full Text] [Related]
10. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, Imhof A, Eick D. Sci Rep; 2016 Jun 06; 6():27401. PubMed ID: 27264542 [Abstract] [Full Text] [Related]
11. 1H, 13C, and 15N resonance assignments for the CTD-interacting domain of Nrd1 bound to Ser5-phosphorylated CTD of RNA polymerase II. Kubíček K, Pasulka J, Černá H, Löhr F, Štefl R. Biomol NMR Assign; 2011 Oct 06; 5(2):203-5. PubMed ID: 21350922 [Abstract] [Full Text] [Related]
12. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, Taylor IA, Ramos A. Nat Struct Mol Biol; 2005 Feb 06; 12(2):144-51. PubMed ID: 15665873 [Abstract] [Full Text] [Related]
13. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Meinhart A, Cramer P. Nature; 2004 Jul 08; 430(6996):223-6. PubMed ID: 15241417 [Abstract] [Full Text] [Related]
14. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. Zhang J, Corden JL. J Biol Chem; 1991 Feb 05; 266(4):2290-6. PubMed ID: 1899239 [Abstract] [Full Text] [Related]
15. Structure and dynamics of the RNAPII CTDsome with Rtt103. Jasnovidova O, Klumpler T, Kubicek K, Kalynych S, Plevka P, Stefl R. Proc Natl Acad Sci U S A; 2017 Oct 17; 114(42):11133-11138. PubMed ID: 29073019 [Abstract] [Full Text] [Related]
16. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Lunde BM, Reichow SL, Kim M, Suh H, Leeper TC, Yang F, Mutschler H, Buratowski S, Meinhart A, Varani G. Nat Struct Mol Biol; 2010 Oct 17; 17(10):1195-201. PubMed ID: 20818393 [Abstract] [Full Text] [Related]
17. Structural basis for the recognition of the S2, S5-phosphorylated RNA polymerase II CTD by the mRNA anti-terminator protein hSCAF4. Zhou M, Ehsan F, Gan L, Dong A, Li Y, Liu K, Min J. FEBS Lett; 2022 Jan 17; 596(2):249-259. PubMed ID: 34897689 [Abstract] [Full Text] [Related]
18. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D, Loehr F, Hofr C, Vanacova S, Stefl R. Genes Dev; 2012 Sep 01; 26(17):1891-6. PubMed ID: 22892239 [Abstract] [Full Text] [Related]
19. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Allepuz-Fuster P, Martínez-Fernández V, Garrido-Godino AI, Alonso-Aguado S, Hanes SD, Navarro F, Calvo O. Nucleic Acids Res; 2014 Dec 16; 42(22):13674-88. PubMed ID: 25416796 [Abstract] [Full Text] [Related]
20. Gene-specific RNA polymerase II phosphorylation and the CTD code. Kim H, Erickson B, Luo W, Seward D, Graber JH, Pollock DD, Megee PC, Bentley DL. Nat Struct Mol Biol; 2010 Oct 16; 17(10):1279-86. PubMed ID: 20835241 [Abstract] [Full Text] [Related] Page: [Next] [New Search]