These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
512 related items for PubMed ID: 28472751
21. Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications. Selvaraju S, Ramalingam S, Rao JR. Colloids Surf B Biointerfaces; 2018 Dec 01; 172():734-742. PubMed ID: 30248644 [Abstract] [Full Text] [Related]
22. Nanoscale hydroxyapatite particles for bone tissue engineering. Zhou H, Lee J. Acta Biomater; 2011 Jul 01; 7(7):2769-81. PubMed ID: 21440094 [Abstract] [Full Text] [Related]
23. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery. Zhao XY, Zhu YJ, Qi C, Chen F, Lu BQ, Zhao J, Wu J. Chem Asian J; 2013 Jun 01; 8(6):1313-20. PubMed ID: 23554329 [Abstract] [Full Text] [Related]
24. A BMSCs-laden quercetin/duck's feet collagen/hydroxyapatite sponge for enhanced bone regeneration. Song JE, Tian J, Kook YJ, Thangavelu M, Choi JH, Khang G. J Biomed Mater Res A; 2020 Mar 01; 108(3):784-794. PubMed ID: 31794132 [Abstract] [Full Text] [Related]
25. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. Sathiyavimal S, Vasantharaj S, LewisOscar F, Pugazhendhi A, Subashkumar R. Int J Biol Macromol; 2019 May 15; 129():844-852. PubMed ID: 30769044 [Abstract] [Full Text] [Related]
26. Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic. D'Elía NL, Gravina AN, Ruso JM, Laiuppa JA, Santillán GE, Messina PV. Biochim Biophys Acta; 2013 Nov 15; 1830(11):5014-26. PubMed ID: 23891938 [Abstract] [Full Text] [Related]
27. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T. Life Sci; 2016 Mar 01; 148():139-44. PubMed ID: 26874032 [Abstract] [Full Text] [Related]
28. Controllable Synthesis of Biomimetic Hydroxyapatite Nanorods with High Osteogenic Bioactivity. Li Y, Wang Y, Li Y, Luo W, Jiang J, Zhao J, Liu C. ACS Biomater Sci Eng; 2020 Jan 13; 6(1):320-328. PubMed ID: 33463205 [Abstract] [Full Text] [Related]
29. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro. Khalid P, Hussain MA, Rekha PD, Arun AB. Hum Exp Toxicol; 2015 May 13; 34(5):548-56. PubMed ID: 25233896 [Abstract] [Full Text] [Related]
30. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Fan T, Chen J, Pan P, Zhang Y, Hu Y, Liu X, Shi X, Zhang Q. Colloids Surf B Biointerfaces; 2016 Nov 01; 147():217-223. PubMed ID: 27518453 [Abstract] [Full Text] [Related]
31. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Chen L, Mccrate JM, Lee JC, Li H. Nanotechnology; 2011 Mar 11; 22(10):105708. PubMed ID: 21289408 [Abstract] [Full Text] [Related]
32. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J. Chemistry; 2013 Apr 22; 19(17):5332-41. PubMed ID: 23460360 [Abstract] [Full Text] [Related]
33. Adsorption and spectroscopic characterization of lactoferrin on hydroxyapatite nanocrystals. Iafisco M, Di Foggia M, Bonora S, Prat M, Roveri N. Dalton Trans; 2011 Jan 28; 40(4):820-7. PubMed ID: 21152600 [Abstract] [Full Text] [Related]
34. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Bhowmick A, Banerjee SL, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP. Int J Biol Macromol; 2018 Jan 28; 106():11-19. PubMed ID: 28774805 [Abstract] [Full Text] [Related]
35. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp. Wang JL, Chen Q, Du BB, Cao L, Lin H, Fan ZY, Dong J. Mater Sci Eng C Mater Biol Appl; 2018 Jun 01; 87():60-69. PubMed ID: 29549950 [Abstract] [Full Text] [Related]
36. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. J Biomater Appl; 2015 May 01; 29(10):1394-406. PubMed ID: 25592285 [Abstract] [Full Text] [Related]
37. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro. Müller WEG, Tolba E, Schröder HC, Muñoz-Espí R, Diehl-Seifert B, Wang X. Acta Biomater; 2016 Feb 01; 31():358-367. PubMed ID: 26654764 [Abstract] [Full Text] [Related]
38. Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering. Park SB, Hasegawa U, van der Vlies AJ, Sung MH, Uyama H. J Biomater Sci Polym Ed; 2014 Feb 01; 25(17):1875-90. PubMed ID: 25178909 [Abstract] [Full Text] [Related]
39. Coupling Hydroxyapatite Nanocrystals with Lactoferrin as a Promising Strategy to Fine Regulate Bone Homeostasis. Montesi M, Panseri S, Iafisco M, Adamiano A, Tampieri A. PLoS One; 2015 Feb 01; 10(7):e0132633. PubMed ID: 26148296 [Abstract] [Full Text] [Related]
40. Effect of hydroxyapatite nanocrystals functionalized with lactoferrin in osteogenic differentiation of mesenchymal stem cells. Montesi M, Panseri S, Iafisco M, Adamiano A, Tampieri A. J Biomed Mater Res A; 2015 Jan 01; 103(1):224-34. PubMed ID: 24639083 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]