These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 28474196

  • 1. Molecular characterization of fructose-1,6-bisphosphatase 1b in blunt snout bream Megalobrama amblycephala and the transcriptional response to glucose loading after the adaptation to high-carbohydrate diets.
    Li XF, Xu C, Jiang GZ, Zhang DD, Liu WB.
    Fish Physiol Biochem; 2017 Oct; 43(5):1337-1349. PubMed ID: 28474196
    [Abstract] [Full Text] [Related]

  • 2. Glucose-6-phosphate dehydrogenase in blunt snout bream Megalobrama amblycephala: molecular characterization, tissue distribution, and the responsiveness to dietary carbohydrate levels.
    Jiang GZ, Shi HJ, Xu C, Zhang DD, Liu WB, Li XF.
    Fish Physiol Biochem; 2019 Feb; 45(1):401-415. PubMed ID: 30225750
    [Abstract] [Full Text] [Related]

  • 3. Molecular characterization of AMP-activated protein kinase α2 from herbivorous fish Megalobrama amblycephala and responsiveness to glucose loading and dietary carbohydrate levels.
    Xu C, Liu WB, Zhang DD, Wang KZ, Xia SL, Li XF.
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jun; 208():24-34. PubMed ID: 28315774
    [Abstract] [Full Text] [Related]

  • 4. Effects of dietary glucose and starch levels on the growth, apparent digestibility, and skin-associated mucosal non-specific immune parameters in juvenile blunt snout bream (Megalobrama amblycephala).
    Xia SL, Li XF, Abasubong KP, Xu C, Shi HJ, Liu WB, Zhang DD.
    Fish Shellfish Immunol; 2018 Aug; 79():193-201. PubMed ID: 29733960
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effects of dietary glucose and dextrin on activity and gene expression of glucokinase and fructose-1,6-bisphosphatase in liver of turbot Scophthalmus maximus.
    Nie Q, Miao H, Miao S, Zhou H, Zhang Y, Zhang W, Mai K.
    Fish Physiol Biochem; 2015 Jun; 41(3):819-32. PubMed ID: 25893902
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Molecular cloning, tissue distribution and expression analysis of a manganese superoxide dismutase in blunt snout bream Megalobrama amblycephala.
    Sun S, Zhu J, Jiang X, Li B, Ge X.
    Fish Shellfish Immunol; 2014 Jun; 38(2):340-7. PubMed ID: 24727153
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. AMP-activated protein kinase α1 in Megalobrama amblycephala: Molecular characterization and the transcriptional modulation by nutrient restriction and glucose and insulin loadings.
    Xu C, Li XF, Shi HJ, Liu J, Zhang L, Liu WB.
    Gen Comp Endocrinol; 2018 Oct 01; 267():66-75. PubMed ID: 29852163
    [Abstract] [Full Text] [Related]

  • 11. Molecular cloning and expression analysis of major histocompatibility complex class I, IIA and IIB genes of blunt snout bream (Megalobrama amblycephala).
    Luo W, Zhang J, Wen JF, Liu H, Wang WM, Gao ZX.
    Dev Comp Immunol; 2014 Feb 01; 42(2):169-73. PubMed ID: 23994238
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway.
    Xu C, Liu WB, Remø SC, Wang BK, Shi HJ, Zhang L, Liu JD, Li XF.
    Fish Shellfish Immunol; 2019 Sep 01; 92():637-648. PubMed ID: 31271836
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-8 from the blunt snout bream (Megalobrama amblycephala) exposed to ammonia.
    Sun S, Ge X, Zhu J, Zhang W, Zhang Q.
    Fish Shellfish Immunol; 2015 Dec 01; 47(2):645-54. PubMed ID: 26492992
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Molecular characterization of farnesoid X receptor alpha in Megalobrama amblycephala and its potential roles in high-carbohydrate diet-induced alterations of bile acid metabolism.
    Ge YP, Chen WL, Sun M, Zhang L, Liu WB, Li XF.
    J Steroid Biochem Mol Biol; 2022 May 01; 219():106065. PubMed ID: 35091085
    [Abstract] [Full Text] [Related]

  • 18. Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream Megalobrama amblycephala Fed High-Carbohydrate Diets by Activating the AMPK-SIRT1-PGC-1α Network.
    Shi HJ, Xu C, Liu MY, Wang BK, Liu WB, Chen DH, Zhang L, Xu CY, Li XF.
    Front Physiol; 2018 May 01; 9():1258. PubMed ID: 30254587
    [Abstract] [Full Text] [Related]

  • 19. Regulation of mitochondrial biosynthesis and function by dietary carbohydrate levels and lipid sources in juvenile blunt snout bream Megalobrama amblycephala.
    Li XF, Wang BK, Xu C, Shi HJ, Zhang L, Liu JD, Tian HY, Liu WB.
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jan 01; 227():14-24. PubMed ID: 30201543
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.