These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Yang Q, Yin D, Yin Y, Cao Y, Ma Z. Mol Plant Pathol; 2015 Apr; 16(3):276-87. PubMed ID: 25130972 [Abstract] [Full Text] [Related]
3. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea. Shao W, Yang Y, Zhang Y, Lv C, Ren W, Chen C. Mol Plant Pathol; 2016 Apr; 17(3):438-47. PubMed ID: 26176995 [Abstract] [Full Text] [Related]
4. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Shao W, Zhang Y, Wang J, Lv C, Chen C. Sci Rep; 2016 Jun 27; 6():28673. PubMed ID: 27346661 [Abstract] [Full Text] [Related]
5. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Yang Q, Chen Y, Ma Z. Fungal Genet Biol; 2013 Jan 27; 50():63-71. PubMed ID: 23147398 [Abstract] [Full Text] [Related]
6. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Yang Q, Yan L, Gu Q, Ma Z. Appl Microbiol Biotechnol; 2012 Oct 27; 96(2):481-92. PubMed ID: 22526788 [Abstract] [Full Text] [Related]
7. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Yan L, Yang Q, Jiang J, Michailides TJ, Ma Z. Appl Microbiol Biotechnol; 2011 Apr 27; 90(1):215-26. PubMed ID: 21161211 [Abstract] [Full Text] [Related]
8. The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea. Ren W, Liu N, Sang C, Shi D, Zhou M, Chen C, Qin Q, Chen W. Appl Environ Microbiol; 2018 Jun 01; 84(11):. PubMed ID: 29572212 [Abstract] [Full Text] [Related]
9. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. Rascle C, Dieryckx C, Dupuy JW, Muszkieta L, Souibgui E, Droux M, Bruel C, Girard V, Poussereau N. Environ Microbiol Rep; 2018 Oct 01; 10(5):555-568. PubMed ID: 30066486 [Abstract] [Full Text] [Related]
10. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C, He Y, Zhu P, Chen L, Wang Y, Ni B, Xu L. Mol Plant Microbe Interact; 2015 Oct 01; 28(10):1091-101. PubMed ID: 26035129 [Abstract] [Full Text] [Related]
11. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Yang Q, Jiang J, Mayr C, Hahn M, Ma Z. Environ Microbiol; 2013 Oct 01; 15(10):2696-711. PubMed ID: 23601355 [Abstract] [Full Text] [Related]
14. Exocyst subunit BcSec3 regulates growth, development and pathogenicity in Botrytis cinerea. Ma Z, Chen Z, Wang W, Wang K, Zhu T. J Biosci; 2020 Oct 01; 45():. PubMed ID: 33184241 [Abstract] [Full Text] [Related]
15. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Schumacher J. Mol Microbiol; 2016 Feb 01; 99(4):729-48. PubMed ID: 26514268 [Abstract] [Full Text] [Related]
17. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea. Ren W, Sang C, Shi D, Song X, Zhou M, Chen C. Curr Genet; 2018 Aug 01; 64(4):919-930. PubMed ID: 29417220 [Abstract] [Full Text] [Related]
19. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea. Ren W, Zhang Z, Shao W, Yang Y, Zhou M, Chen C. Mol Plant Pathol; 2017 Feb 01; 18(2):238-248. PubMed ID: 26972592 [Abstract] [Full Text] [Related]