These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 28482187

  • 1. Heavy metal uptake by plant parts of willow species: A meta-analysis.
    Tőzsér D, Magura T, Simon E.
    J Hazard Mater; 2017 Aug 15; 336():101-109. PubMed ID: 28482187
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S, Tlustoš P, Száková J.
    Environ Sci Pollut Res Int; 2017 Aug 15; 24(23):19201-19210. PubMed ID: 28664494
    [Abstract] [Full Text] [Related]

  • 5. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
    Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW.
    Environ Pollut; 2007 Jul 15; 148(1):155-65. PubMed ID: 17241723
    [Abstract] [Full Text] [Related]

  • 6. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture.
    Xu X, Yang B, Qin G, Wang H, Zhu Y, Zhang K, Yang H.
    Environ Sci Pollut Res Int; 2019 Jul 15; 26(19):19770-19784. PubMed ID: 31090001
    [Abstract] [Full Text] [Related]

  • 7. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L, Tlustoš P, Száková J.
    Int J Phytoremediation; 2015 Jul 15; 17(1-6):414-21. PubMed ID: 25495931
    [Abstract] [Full Text] [Related]

  • 8. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.
    McBride MB, Martinez CE, Kim B.
    Int J Phytoremediation; 2016 Dec 15; 18(12):1178-86. PubMed ID: 27216699
    [Abstract] [Full Text] [Related]

  • 9. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field.
    Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F.
    Environ Sci Pollut Res Int; 2009 Jan 15; 16(1):42-53. PubMed ID: 18594892
    [Abstract] [Full Text] [Related]

  • 10. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.
    Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M.
    Environ Sci Pollut Res Int; 2015 Sep 15; 22(17):13179-93. PubMed ID: 25929455
    [Abstract] [Full Text] [Related]

  • 11. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils.
    Van Slycken S, Witters N, Meiresonne L, Meers E, Ruttens A, Van Peteghem P, Weyens N, Tack FM, Vangronsveld J.
    Int J Phytoremediation; 2013 Sep 15; 15(7):677-89. PubMed ID: 23819267
    [Abstract] [Full Text] [Related]

  • 12. Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix × aureo-pendula CL 'j1011').
    Sun YY, Xu HX, Li JH, Shi XQ, Wu JC, Ji R, Guo HY.
    Int J Phytoremediation; 2016 Sep 15; 18(2):150-6. PubMed ID: 26247604
    [Abstract] [Full Text] [Related]

  • 13. Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil.
    Lepp NW, Madejón P.
    J Environ Qual; 2007 Sep 15; 36(4):1123-31. PubMed ID: 17596620
    [Abstract] [Full Text] [Related]

  • 14. Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
    Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustos P, Zupan M, Wenzel WW.
    Environ Pollut; 2007 Jul 15; 148(1):107-14. PubMed ID: 17224228
    [Abstract] [Full Text] [Related]

  • 15. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis I. The effectiveness of Cd, Cu, Pb, and Zn bioaccumulation and plant growth.
    Mleczek M, Kozlowska M, Kaczmarek Z, Chadzinikolau T, Golinski P.
    Int J Phytoremediation; 2012 Jan 15; 14(1):75-88. PubMed ID: 22567696
    [Abstract] [Full Text] [Related]

  • 16. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B, Lopareva-Pohu A, Pruvot C, Garçon G, Verdin A, Waterlot C, Bidar G, Shirali P, Douay F.
    Sci Total Environ; 2011 Oct 01; 409(21):4504-10. PubMed ID: 21871650
    [Abstract] [Full Text] [Related]

  • 17. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Mannai K, Jebara M.
    Arch Microbiol; 2019 Jan 01; 201(1):107-121. PubMed ID: 30276423
    [Abstract] [Full Text] [Related]

  • 18. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.
    Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, Carleer R, Vangronsveld J.
    Int J Phytoremediation; 2015 Jan 01; 17(11):1123-36. PubMed ID: 25942689
    [Abstract] [Full Text] [Related]

  • 19. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment.
    Mertens J, Vervaeke P, Meers E, Tack FM.
    Environ Sci Technol; 2006 Mar 15; 40(6):1962-8. PubMed ID: 16570622
    [Abstract] [Full Text] [Related]

  • 20. [Pb, Zn accumulation and nutrient uptake of 15 plant species grown in abandoned mine tailings].
    Shi X, Chen YT, Wang SF, Li JC.
    Huan Jing Ke Xue; 2012 Jun 15; 33(6):2021-7. PubMed ID: 22946191
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.