These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Colloids Surf B Biointerfaces; 2017 Oct 01; 158():697-708. PubMed ID: 28778053 [Abstract] [Full Text] [Related]
4. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H. J Zhejiang Univ Sci B; 2017 Oct 01; 18(11):963-976. PubMed ID: 29119734 [Abstract] [Full Text] [Related]
6. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. Johari B, Ahmadzadehzarajabad M, Azami M, Kazemi M, Soleimani M, Kargozar S, Hajighasemlou S, Farajollahi MM, Samadikuchaksaraei A. J Biomed Mater Res A; 2016 Jul 01; 104(7):1770-8. PubMed ID: 26990815 [Abstract] [Full Text] [Related]
9. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Azami M, Samadikuchaksaraei A, Poursamar SA. Int J Artif Organs; 2010 Feb 01; 33(2):86-95. PubMed ID: 20306435 [Abstract] [Full Text] [Related]
15. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L, Yu H, Yang W, Zhu Z, Yue L. J Biomater Sci Polym Ed; 2016 Feb 01; 27(6):505-28. PubMed ID: 26873015 [Abstract] [Full Text] [Related]
16. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K, Dasgupta S, Kundu B, Bissoyi A. J Biomater Sci Polym Ed; 2015 Feb 01; 26(16):1190-209. PubMed ID: 26335156 [Abstract] [Full Text] [Related]
17. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
18. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N, Pavasant P, Supaphol P. J Biomater Sci Polym Ed; 2014 May 01; 25(17):1986-2008. PubMed ID: 25291106 [Abstract] [Full Text] [Related]
19. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Park M, Lee D, Shin S, Hyun J. Colloids Surf B Biointerfaces; 2015 Jun 01; 130():222-8. PubMed ID: 25910635 [Abstract] [Full Text] [Related]
20. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Gómez-Lizárraga KK, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C. Mater Sci Eng C Mater Biol Appl; 2017 Oct 01; 79():326-335. PubMed ID: 28629025 [Abstract] [Full Text] [Related] Page: [Next] [New Search]