These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 28492307

  • 1. Sensitive Quantification of MicroRNAs by Isothermal Helicase-Dependent Amplification.
    Ma F, Liu M, Tang B, Zhang CY.
    Anal Chem; 2017 Jun 06; 89(11):6182-6187. PubMed ID: 28492307
    [Abstract] [Full Text] [Related]

  • 2. Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification.
    Liu H, Tian T, Zhang Y, Ding L, Yu J, Yan M.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 2):710-714. PubMed ID: 27865105
    [Abstract] [Full Text] [Related]

  • 3. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.
    Li W, Hou T, Wu M, Li F.
    Talanta; 2016 Mar 15; 148():116-21. PubMed ID: 26653431
    [Abstract] [Full Text] [Related]

  • 4. Nucleic Acid Amplification-Free Bioluminescent Detection of MicroRNAs with High Sensitivity and Accuracy Based on Controlled Target Degradation.
    Xu Q, Ma F, Huang SQ, Tang B, Zhang CY.
    Anal Chem; 2017 Jul 05; 89(13):7077-7083. PubMed ID: 28573855
    [Abstract] [Full Text] [Related]

  • 5. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.
    Liu Y, Zhang J, Tian J, Fan X, Geng H, Cheng Y.
    Anal Bioanal Chem; 2017 Jan 05; 409(1):107-114. PubMed ID: 27815611
    [Abstract] [Full Text] [Related]

  • 6. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification.
    Xi Q, Zhou DM, Kan YY, Ge J, Wu ZK, Yu RQ, Jiang JH.
    Anal Chem; 2014 Feb 04; 86(3):1361-5. PubMed ID: 24446758
    [Abstract] [Full Text] [Related]

  • 7. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.
    Zhang K, Wang K, Zhu X, Xu F, Xie M.
    Biosens Bioelectron; 2017 Jan 15; 87():358-364. PubMed ID: 27589398
    [Abstract] [Full Text] [Related]

  • 8. Sensitive detection of microRNA in complex biological samples via enzymatic signal amplification using DNA polymerase coupled with nicking endonuclease.
    Yin BC, Liu YQ, Ye BC.
    Anal Chem; 2013 Dec 03; 85(23):11487-93. PubMed ID: 24195675
    [Abstract] [Full Text] [Related]

  • 9. Sensitive detection of microRNAs with hairpin probe-based circular exponential amplification assay.
    Wang GL, Zhang CY.
    Anal Chem; 2012 Aug 21; 84(16):7037-42. PubMed ID: 22834952
    [Abstract] [Full Text] [Related]

  • 10. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.
    Huang Y, Wang W, Wu T, Xu LP, Wen Y, Zhang X.
    Anal Bioanal Chem; 2016 Nov 21; 408(28):8195-8202. PubMed ID: 27624762
    [Abstract] [Full Text] [Related]

  • 11. Ultrasensitive detection of microRNAs based on hairpin fluorescence probe assisted isothermal amplification.
    Ma C, Liu S, Shi C.
    Biosens Bioelectron; 2014 Aug 15; 58():57-60. PubMed ID: 24613970
    [Abstract] [Full Text] [Related]

  • 12. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H, Zhang Y, Zhang S, Sun M, Li W, Jiang Y, Wu ZS.
    Anal Chim Acta; 2019 Jan 24; 1047():172-178. PubMed ID: 30567647
    [Abstract] [Full Text] [Related]

  • 13. A target-triggered dual amplification strategy for sensitive detection of microRNA.
    Lv W, Zhao J, Situ B, Li B, Ma W, Liu J, Wu Z, Wang W, Yan X, Zheng L.
    Biosens Bioelectron; 2016 Sep 15; 83():250-5. PubMed ID: 27131998
    [Abstract] [Full Text] [Related]

  • 14. One-step, ultrasensitive, and electrochemical assay of microRNAs based on T7 exonuclease assisted cyclic enzymatic amplification.
    Wang M, Fu Z, Li B, Zhou Y, Yin H, Ai S.
    Anal Chem; 2014 Jun 17; 86(12):5606-10. PubMed ID: 24893976
    [Abstract] [Full Text] [Related]

  • 15. A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA.
    Wang R, Wang L, Zhao H, Jiang W.
    Biosens Bioelectron; 2016 Dec 15; 86():834-839. PubMed ID: 27494806
    [Abstract] [Full Text] [Related]

  • 16. A simple and highly sensitive fluorescence assay for microRNAs.
    Shen W, Yeo KH, Gao Z.
    Analyst; 2015 Mar 21; 140(6):1932-8. PubMed ID: 25655238
    [Abstract] [Full Text] [Related]

  • 17. A multiple amplification strategy for nucleic acid detection based on host-guest interaction between the β-cyclodextrin polymer and pyrene.
    Guo X, Liu P, Yang X, Wang K, Wang Q, Guo Q, Huang J, Liu J, Song C, Li W.
    Analyst; 2015 Mar 21; 140(6):2016-22. PubMed ID: 25672284
    [Abstract] [Full Text] [Related]

  • 18. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification.
    Yu Y, Chen Z, Shi L, Yang F, Pan J, Zhang B, Sun D.
    Anal Chem; 2014 Aug 19; 86(16):8200-5. PubMed ID: 25054588
    [Abstract] [Full Text] [Related]

  • 19. A highly sensitive and selective signal-on strategy for microRNA quantification.
    Pan L, Zhang H, Zhao J, Li X, Xu R, Mo Y, Tchounwou PB, Liu YM.
    Anal Chim Acta; 2020 Mar 01; 1100():258-266. PubMed ID: 31987149
    [Abstract] [Full Text] [Related]

  • 20. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor.
    Zhang Y, Zhang CY.
    Anal Chem; 2012 Jan 03; 84(1):224-31. PubMed ID: 22103863
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.