These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 2849419
1. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Brand MD, Hafner RP, Brown GC. Biochem J; 1988 Oct 15; 255(2):535-9. PubMed ID: 2849419 [Abstract] [Full Text] [Related]
2. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Hafner RP, Brown GC, Brand MD. Eur J Biochem; 1990 Mar 10; 188(2):313-9. PubMed ID: 2156698 [Abstract] [Full Text] [Related]
3. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). Duong CA, Sepulveda CA, Graham JB, Dickson KA. J Exp Biol; 2006 Jul 10; 209(Pt 14):2678-85. PubMed ID: 16809458 [Abstract] [Full Text] [Related]
4. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria. Fransvea E, La Piana G, Marzulli D, Lofrumento NE. Arch Biochem Biophys; 1998 Jul 01; 355(1):93-100. PubMed ID: 9647671 [Abstract] [Full Text] [Related]
5. The proton leak across the mitochondrial inner membrane. Brand MD. Biochim Biophys Acta; 1990 Jul 25; 1018(2-3):128-33. PubMed ID: 2393654 [Abstract] [Full Text] [Related]
6. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions. Videira RA, Antunes-Madeira MC, Madeira VM. Toxicol Appl Pharmacol; 2001 Sep 15; 175(3):209-16. PubMed ID: 11559019 [Abstract] [Full Text] [Related]
7. The early triiodothyronine-induced changes in state IV respiration is not regulated by the proton permeability of the mitochondrial inner membrane. Horrum MA, Tobin RB, Ecklund RE. Biochem Int; 1992 Dec 15; 28(5):813-21. PubMed ID: 1337696 [Abstract] [Full Text] [Related]
8. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ. Biochem J; 2003 Dec 15; 376(Pt 3):741-8. PubMed ID: 12943530 [Abstract] [Full Text] [Related]
9. Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms. Hulbert AJ, Else PL, Manolis SC, Brand MD. J Comp Physiol B; 2002 Jul 15; 172(5):387-97. PubMed ID: 12122455 [Abstract] [Full Text] [Related]
10. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system]. Novgorodov SA, Dragunova SF, Iaguzhinskiĭ LS. Biofizika; 1982 Jul 15; 27(2):244-8. PubMed ID: 6462181 [Abstract] [Full Text] [Related]
11. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation]. Samartsev VN, Kozhina OV, Polishchuk LS. Biofizika; 2005 Jul 15; 50(4):660-7. PubMed ID: 16212057 [Abstract] [Full Text] [Related]
12. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Cardoso CM, Custódio JB, Almeida LM, Moreno AJ. Toxicol Appl Pharmacol; 2001 Nov 01; 176(3):145-52. PubMed ID: 11714246 [Abstract] [Full Text] [Related]
13. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. Nobes CD, Brown GC, Olive PN, Brand MD. J Biol Chem; 1990 Aug 05; 265(22):12903-9. PubMed ID: 2376579 [Abstract] [Full Text] [Related]
14. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Newton AP, Cadena SM, Rocha ME, Carnieri EG, Martinelli de Oliveira MB. Toxicol Lett; 2005 Dec 30; 160(1):49-59. PubMed ID: 16023799 [Abstract] [Full Text] [Related]
15. Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted rats. Ramsey JJ, Hagopian K, Kenny TM, Koomson EK, Bevilacqua L, Weindruch R, Harper ME. Am J Physiol Endocrinol Metab; 2004 Jan 30; 286(1):E31-40. PubMed ID: 14662512 [Abstract] [Full Text] [Related]
16. Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Porter RK, Brand MD. Nature; 1993 Apr 15; 362(6421):628-30. PubMed ID: 8385274 [Abstract] [Full Text] [Related]
17. Nucleotide effects on liver and muscle mitochondrial non-phosphorylating respiration and membrane potential. Jekabsons MB, Horwitz BA. Biochim Biophys Acta; 2001 Jan 19; 1503(3):314-28. PubMed ID: 11115643 [Abstract] [Full Text] [Related]
18. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Borutaite V, Mildaziene V, Brown GC, Brand MD. Biochim Biophys Acta; 1995 Dec 12; 1272(3):154-8. PubMed ID: 8541346 [Abstract] [Full Text] [Related]
19. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Brown GC, Lakin-Thomas PL, Brand MD. Eur J Biochem; 1990 Sep 11; 192(2):355-62. PubMed ID: 2209591 [Abstract] [Full Text] [Related]
20. Resting state respiration of mitochondria: reappraisal of the role of passive ion fluxes. Zółkiewska A, Zabłocka B, Duszyński J, Wojtczak L. Arch Biochem Biophys; 1989 Dec 11; 275(2):580-90. PubMed ID: 2556969 [Abstract] [Full Text] [Related] Page: [Next] [New Search]