These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 2849589
1. DNA damage by chemically generated singlet oxygen. Lafleur MV, Nieuwint AW, Aubry JM, Kortbeek H, Arwert F, Joenje H. Free Radic Res Commun; 1987; 2(4-6):343-50. PubMed ID: 2849589 [Abstract] [Full Text] [Related]
2. Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. Di Mascio P, Wefers H, Do-Thi HP, Lafleur MV, Sies H. Biochim Biophys Acta; 1989 Mar 01; 1007(2):151-7. PubMed ID: 2920171 [Abstract] [Full Text] [Related]
3. Interaction of singlet oxygen with DNA and biological consequences. Lutgerink JT, van den Akker E, Smeets I, Pachen D, van Dijk P, Aubry JM, Joenje H, Lafleur MV, Retèl J. Mutat Res; 1992 Sep 01; 275(3-6):377-86. PubMed ID: 1383778 [Abstract] [Full Text] [Related]
4. Singlet oxygen-induced DNA damage: product analysis, studies of biological consequences and characterization of mutations. Lutgerink JT, van den Akker E, Pachen D, Smeets EJ, van Dijk P, Aubry JM, Joenje H, Lafleur MV, Retèl J. IARC Sci Publ; 1993 Sep 01; (124):115-25. PubMed ID: 8225474 [Abstract] [Full Text] [Related]
5. Effects of the ortho-quinone and catechol of the antitumor drug VP-16-213 on the biological activity of single-stranded and double-stranded phi X174 DNA. van Maanen JM, Lafleur MV, Mans DR, van den Akker E, de Ruiter C, Kootstra PR, Pappie D, de Vries J, Retèl J, Pinedo HM. Biochem Pharmacol; 1988 Oct 01; 37(19):3579-89. PubMed ID: 2972290 [Abstract] [Full Text] [Related]
7. Inactivation of viruses by chemically and photochemically generated singlet molecular oxygen. Müller-Breitkreutz K, Mohr H, Briviba K, Sies H. J Photochem Photobiol B; 1995 Sep 01; 30(1):63-70. PubMed ID: 8558363 [Abstract] [Full Text] [Related]
8. Formation of different reaction products with single- and double-stranded DNA by the ortho-quinone and the semi-quinone free radical of etoposide (VP-16-213). Mans DR, Lafleur MV, Westmijze EJ, van Maanen JM, van Schaik MA, Lankelma J, Retèl J. Biochem Pharmacol; 1991 Nov 06; 42(11):2131-9. PubMed ID: 1958231 [Abstract] [Full Text] [Related]
9. Role of the semi-quinone free radical of the anti-tumour agent etoposide (VP-16-213) in the inactivation of single- and double-stranded phi X174 DNA. Mans DR, Retèl J, van Maanen JM, Lafleur MV, van Schaik MA, Pinedo HM, Lankelma J. Br J Cancer; 1990 Jul 06; 62(1):54-60. PubMed ID: 2167725 [Abstract] [Full Text] [Related]
10. Effects of oxygen radical scavengers on the inactivation of SS phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide. Van Maanen JM, Mans DR, Lafleur MV, Van Schaik MA, de Vries J, Vermeulen NP, Retèl J, Lankelma J. Free Radic Res Commun; 1990 Jul 06; 9(2):69-86. PubMed ID: 2161389 [Abstract] [Full Text] [Related]
11. Loss of transforming activity of plasmid DNA (pBR322) in E. coli caused by singlet molecular oxygen. Wefers H, Schulte-Frohlinde D, Sies H. FEBS Lett; 1987 Jan 19; 211(1):49-52. PubMed ID: 3026841 [Abstract] [Full Text] [Related]
12. By-pass of the major aminofluorene-DNA adduct during in vivo replication of single- and double-stranded phi X174 DNA treated with N-hydroxy-2-aminofluorene. Lutgerink JT, Retèl J, Westra JG, Welling MC, Loman H, Kriek E. Carcinogenesis; 1985 Oct 19; 6(10):1501-6. PubMed ID: 2931208 [Abstract] [Full Text] [Related]
13. Singlet oxygen induced DNA damage and mutagenicity in a single-stranded SV40-based shuttle vector. Ribeiro DT, Madzak C, Sarasin A, Di Mascio P, Sies H, Menck CF. Photochem Photobiol; 1992 Jan 19; 55(1):39-45. PubMed ID: 1318549 [Abstract] [Full Text] [Related]
14. Differences in secondary structure between packaged and unpackaged single-stranded DNA of bacteriophage phi X174 determined by Raman spectroscopy: a model for phi X174 DNA packaging. Benevides JM, Stow PL, Ilag LL, Incardona NL, Thomas GJ. Biochemistry; 1991 May 21; 30(20):4855-63. PubMed ID: 1827990 [Abstract] [Full Text] [Related]
15. Mutational specificity of oxidative DNA damage. Retèl J, Hoebee B, Braun JE, Lutgerink JT, van den Akker E, Wanamarta AH, Joenje H, Lafleur MV. Mutat Res; 1993 May 21; 299(3-4):165-82. PubMed ID: 7683085 [Abstract] [Full Text] [Related]
16. Processing of model single-strand breaks in phi X-174 RF transfecting DNA by Escherichia coli. Kow YW, Faundez G, Melamede RJ, Wallace SS. Radiat Res; 1991 Jun 21; 126(3):357-66. PubMed ID: 1852023 [Abstract] [Full Text] [Related]
17. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Li Y, Trush MA. Carcinogenesis; 1993 Jul 21; 14(7):1303-11. PubMed ID: 8392444 [Abstract] [Full Text] [Related]
18. Inability of chemically generated singlet oxygen to break the DNA backbone. Nieuwint AW, Aubry JM, Arwert F, Kortbeek H, Herzberg S, Joenje H. Free Radic Res Commun; 1985 Jul 21; 1(1):1-9. PubMed ID: 3880013 [Abstract] [Full Text] [Related]
19. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Li Y, Trush MA. Cancer Res; 1994 Apr 01; 54(7 Suppl):1895s-1898s. PubMed ID: 8137307 [Abstract] [Full Text] [Related]
20. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Lafleur MV, Hoorweg JJ, Joenje H, Westmijze EJ, Retèl J. Free Radic Res; 1994 Jul 01; 21(1):9-17. PubMed ID: 7951911 [Abstract] [Full Text] [Related] Page: [Next] [New Search]