These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 2850182
1. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri. Müller V, Winner C, Gottschalk G. Eur J Biochem; 1988 Dec 15; 178(2):519-25. PubMed ID: 2850182 [Abstract] [Full Text] [Related]
2. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. Blaut M, Müller V, Fiebig K, Gottschalk G. J Bacteriol; 1985 Oct 15; 164(1):95-101. PubMed ID: 3930472 [Abstract] [Full Text] [Related]
3. The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Kaesler B, Schönheit P. Eur J Biochem; 1989 Dec 08; 186(1-2):309-16. PubMed ID: 2557210 [Abstract] [Full Text] [Related]
4. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Blaut M, Gottschalk G. Eur J Biochem; 1984 May 15; 141(1):217-22. PubMed ID: 6327309 [Abstract] [Full Text] [Related]
5. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Müller V, Blaut M, Gottschalk G. Eur J Biochem; 1988 Mar 15; 172(3):601-6. PubMed ID: 3350015 [Abstract] [Full Text] [Related]
6. The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2-3 Na+/CO2. Kaesler B, Schönheit P. Eur J Biochem; 1989 Sep 01; 184(1):223-32. PubMed ID: 2550228 [Abstract] [Full Text] [Related]
7. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis. Kaesler B, Schönheit P. Eur J Biochem; 1988 May 16; 174(1):189-97. PubMed ID: 2897291 [Abstract] [Full Text] [Related]
8. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Müller V, Blaut M, Gottschalk G. Eur J Biochem; 1987 Jan 15; 162(2):461-6. PubMed ID: 3026814 [Abstract] [Full Text] [Related]
10. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Bott M, Thauer RK. Eur J Biochem; 1987 Oct 15; 168(2):407-12. PubMed ID: 2822415 [Abstract] [Full Text] [Related]
11. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. Peinemann S, Müller V, Blaut M, Gottschalk G. J Bacteriol; 1988 Mar 15; 170(3):1369-72. PubMed ID: 3343222 [Abstract] [Full Text] [Related]
14. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Bott M, Eikmanns B, Thauer RK. Eur J Biochem; 1986 Sep 01; 159(2):393-8. PubMed ID: 3093229 [Abstract] [Full Text] [Related]
19. Methane synthesis without the addition of adenosine triphosphate by cell membranes isolated from Methanobacterium ruminantium. Sauer FD, Erfle JD, Mahadevan S. Biochem J; 1979 Jan 15; 178(1):165-72. PubMed ID: 435275 [Abstract] [Full Text] [Related]