These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 28513731
1. Ag@Au nanoprism-metal organic framework-based paper for extending the glucose sensing range in human serum and urine. Huang PH, Hong CP, Zhu JF, Chen TT, Chan CT, Ko YC, Lin TL, Pan ZB, Sun NK, Wang YC, Luo JJ, Lin TC, Kang CC, Shyue JJ, Ho ML. Dalton Trans; 2017 May 30; 46(21):6985-6993. PubMed ID: 28513731 [Abstract] [Full Text] [Related]
2. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles. Kang F, Hou X, Xu K. Nanotechnology; 2015 Oct 09; 26(40):405707. PubMed ID: 26376788 [Abstract] [Full Text] [Related]
3. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Xia Y, Ye J, Tan K, Wang J, Yang G. Anal Chem; 2013 Jul 02; 85(13):6241-7. PubMed ID: 23706061 [Abstract] [Full Text] [Related]
4. A new preparation of Au nanoplates and their application for glucose sensing. Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X. Biosens Bioelectron; 2011 Oct 15; 28(1):344-8. PubMed ID: 21839630 [Abstract] [Full Text] [Related]
5. Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H₂O₂-Cu²⁺/IL chemiluminescence system. Chaichi MJ, Alijanpour SO. J Photochem Photobiol B; 2014 Nov 15; 140():41-8. PubMed ID: 25086323 [Abstract] [Full Text] [Related]
6. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Dong S, Zhang D, Suo G, Wei W, Huang T. Anal Chim Acta; 2016 Aug 31; 934():203-11. PubMed ID: 27506361 [Abstract] [Full Text] [Related]
7. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Qi G, Wang Y, Zhang B, Sun D, Fu C, Xu W, Xu S. Anal Bioanal Chem; 2016 Oct 31; 408(26):7513-20. PubMed ID: 27518716 [Abstract] [Full Text] [Related]
8. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose. Shuai Y, Liu C, Wang J, Cui X, Nie L. Analyst; 2013 Jun 07; 138(11):3259-63. PubMed ID: 23616983 [Abstract] [Full Text] [Related]
9. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Li JJ, Qiao D, Zhao J, Weng GJ, Zhu J, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 15; 217():247-255. PubMed ID: 30947133 [Abstract] [Full Text] [Related]
10. Synthesis of Ag nanoparticle-decorated 2,4,6-tris(2-pyridyl)-1,3,5-triazine nanobelts and their application for H2O2 and glucose detection. Qin X, Lu W, Luo Y, Chang G, Asiri AM, Al-Youbi AO, Sun X. Analyst; 2012 Feb 21; 137(4):939-43. PubMed ID: 22179818 [Abstract] [Full Text] [Related]
11. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F, De Micheli G, Carrara S. Bioelectrochemistry; 2016 Dec 21; 112():125-31. PubMed ID: 27008973 [Abstract] [Full Text] [Related]
12. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Al-Ogaidi I, Gou H, Al-Kazaz AK, Aguilar ZP, Melconian AK, Zheng P, Wu N. Anal Chim Acta; 2014 Feb 06; 811():76-80. PubMed ID: 24456597 [Abstract] [Full Text] [Related]
13. Evaluation of luminol chemiluminescence based on simultaneous introducing of coumarin derivatives as green fluorophores and chitosan-induced Au/Ag alloy nanoparticle as catalyst for the sensitive determination of glucose. Chaichi MJ, Alijanpour SO, Asghari S, Shadlou S. J Fluoresc; 2015 Mar 06; 25(2):263-75. PubMed ID: 25641112 [Abstract] [Full Text] [Related]
14. Enzyme-Free Tandem Reaction Strategy for Surface-Enhanced Raman Scattering Detection of Glucose by Using the Composite of Au Nanoparticles and Porphyrin-Based Metal-Organic Framework. Hu S, Jiang Y, Wu Y, Guo X, Ying Y, Wen Y, Yang H. ACS Appl Mater Interfaces; 2020 Dec 09; 12(49):55324-55330. PubMed ID: 33228360 [Abstract] [Full Text] [Related]
15. Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Kuo PC, Lien CW, Mao JY, Unnikrishnan B, Chang HT, Lin HJ, Huang CC. Anal Chim Acta; 2018 Jun 07; 1009():89-97. PubMed ID: 29422136 [Abstract] [Full Text] [Related]
16. A novel conductance glucose biosensor in ultra-low ionic strength solution triggered by the oxidation of Ag nanoparticles. Song Y, Chen J, Liu H, Li P, Li H, Wang L. Anal Chim Acta; 2015 Sep 03; 891():144-50. PubMed ID: 26388373 [Abstract] [Full Text] [Related]
17. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q. Biosens Bioelectron; 2009 Sep 15; 25(1):142-6. PubMed ID: 19595586 [Abstract] [Full Text] [Related]
18. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X, Chen Y, Qin M, Chen Y, Yang L, Zhang H, Tian Y. Talanta; 2013 Dec 15; 117():203-8. PubMed ID: 24209331 [Abstract] [Full Text] [Related]
19. Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate. Chen Q, Fu Y, Zhang W, Ye S, Zhang H, Xie F, Gong L, Wei Z, Jin H, Chen J. Talanta; 2017 Apr 01; 165():516-521. PubMed ID: 28153291 [Abstract] [Full Text] [Related]
20. Modified gold surfaces by 6-(ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Karadag M, Geyik C, Demirkol DO, Ertas FN, Timur S. Mater Sci Eng C Mater Biol Appl; 2013 Mar 01; 33(2):634-40. PubMed ID: 25427467 [Abstract] [Full Text] [Related] Page: [Next] [New Search]