These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 28520400

  • 1. Femtomole-Scale High-Throughput Screening of Protein Ligands with Droplet-Based Thermal Shift Assay.
    Liu WW, Zhu Y, Fang Q.
    Anal Chem; 2017 Jun 20; 89(12):6678-6685. PubMed ID: 28520400
    [Abstract] [Full Text] [Related]

  • 2. Forming a Large-Scale Droplet Array in a Microcage Array Chip for High-Throughput Screening.
    Xu JG, Huang MS, Wang HF, Fang Q.
    Anal Chem; 2019 Aug 20; 91(16):10757-10763. PubMed ID: 31335121
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.
    Wang XL, Zhu Y, Fang Q.
    Analyst; 2014 Jan 07; 139(1):191-7. PubMed ID: 24196165
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Screening Chemoreceptor-Ligand Interactions by High-Throughput Thermal-Shift Assays.
    Ehrhardt MKG, Warring SL, Gerth ML.
    Methods Mol Biol; 2018 Jan 07; 1729():281-290. PubMed ID: 29429098
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Encoding Microreactors with Droplet Chains in Microfluidics.
    Song W, Lin G, Ge J, Fassbender J, Makarov D.
    ACS Sens; 2017 Dec 22; 2(12):1839-1846. PubMed ID: 29183119
    [Abstract] [Full Text] [Related]

  • 13. Ultra-high throughput detection (1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics.
    Yelleswarapu VR, Jeong HH, Yadavali S, Issadore D.
    Lab Chip; 2017 Mar 14; 17(6):1083-1094. PubMed ID: 28225099
    [Abstract] [Full Text] [Related]

  • 14. Droplet microfluidic technology for single-cell high-throughput screening.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML.
    Proc Natl Acad Sci U S A; 2009 Aug 25; 106(34):14195-200. PubMed ID: 19617544
    [Abstract] [Full Text] [Related]

  • 15. Analysis of protein stability and ligand interactions by thermal shift assay.
    Huynh K, Partch CL.
    Curr Protoc Protein Sci; 2015 Feb 02; 79():28.9.1-28.9.14. PubMed ID: 25640896
    [Abstract] [Full Text] [Related]

  • 16. Droplet interfaced parallel and quantitative microfluidic-based separations.
    Hassan SU, Morgan H, Zhang X, Niu X.
    Anal Chem; 2015 Apr 07; 87(7):3895-901. PubMed ID: 25775116
    [Abstract] [Full Text] [Related]

  • 17. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique.
    Chen J, Ji X, He Z.
    Anal Chim Acta; 2015 Aug 12; 888():110-7. PubMed ID: 26320965
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.