These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


697 related items for PubMed ID: 28525741

  • 1. In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome.
    Tsuchiya H, Ohtake F, Arai N, Kaiho A, Yasuda S, Tanaka K, Saeki Y.
    Mol Cell; 2017 May 18; 66(4):488-502.e7. PubMed ID: 28525741
    [Abstract] [Full Text] [Related]

  • 2. The Cdc48-Ufd1-Npl4 complex is central in ubiquitin-proteasome triggered catabolite degradation of fructose-1,6-bisphosphatase.
    Barbin L, Eisele F, Santt O, Wolf DH.
    Biochem Biophys Res Commun; 2010 Apr 02; 394(2):335-41. PubMed ID: 20206597
    [Abstract] [Full Text] [Related]

  • 3. A conserved protein with AN1 zinc finger and ubiquitin-like domains modulates Cdc48 (p97) function in the ubiquitin-proteasome pathway.
    Sá-Moura B, Funakoshi M, Tomko RJ, Dohmen RJ, Wu Z, Peng J, Hochstrasser M.
    J Biol Chem; 2013 Nov 22; 288(47):33682-33696. PubMed ID: 24121501
    [Abstract] [Full Text] [Related]

  • 4. Structures of Rpn1 T1:Rad23 and hRpn13:hPLIC2 Reveal Distinct Binding Mechanisms between Substrate Receptors and Shuttle Factors of the Proteasome.
    Chen X, Randles L, Shi K, Tarasov SG, Aihara H, Walters KJ.
    Structure; 2016 Aug 02; 24(8):1257-1270. PubMed ID: 27396824
    [Abstract] [Full Text] [Related]

  • 5. A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2.
    Liu C, van Dyk D, Li Y, Andrews B, Rao H.
    BMC Biol; 2009 Nov 12; 7():75. PubMed ID: 19909498
    [Abstract] [Full Text] [Related]

  • 6. Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis.
    Fatimababy AS, Lin YL, Usharani R, Radjacommare R, Wang HT, Tsai HL, Lee Y, Fu H.
    FEBS J; 2010 Feb 12; 277(3):796-816. PubMed ID: 20059542
    [Abstract] [Full Text] [Related]

  • 7. Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation.
    Gödderz D, Heinen C, Marchese FP, Kurz T, Acs K, Dantuma NP.
    Sci Rep; 2015 Jan 05; 5():7615. PubMed ID: 25556859
    [Abstract] [Full Text] [Related]

  • 8. Ubiquitin chains in the Dsk2 UBL domain mediate Dsk2 stability and protein degradation in yeast.
    Sekiguchi T, Sasaki T, Funakoshi M, Ishii T, Saitoh YH, Kaneko S, Kobayashi H.
    Biochem Biophys Res Commun; 2011 Aug 05; 411(3):555-61. PubMed ID: 21763274
    [Abstract] [Full Text] [Related]

  • 9. Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway.
    Ishii T, Funakoshi M, Kobayashi H.
    EMBO J; 2006 Nov 29; 25(23):5492-503. PubMed ID: 17082762
    [Abstract] [Full Text] [Related]

  • 10. Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome.
    Zuin A, Bichmann A, Isasa M, Puig-Sàrries P, Díaz LM, Crosas B.
    Biochem J; 2015 Dec 15; 472(3):353-65. PubMed ID: 26450923
    [Abstract] [Full Text] [Related]

  • 11. The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23.
    Ossareh-Nazari B, Cohen M, Dargemont C.
    Exp Cell Res; 2010 Dec 10; 316(20):3351-7. PubMed ID: 20846524
    [Abstract] [Full Text] [Related]

  • 12. The deubiquitylating enzyme Ubp12 regulates Rad23-dependent proteasomal degradation.
    Gödderz D, Giovannucci TA, Laláková J, Menéndez-Benito V, Dantuma NP.
    J Cell Sci; 2017 Oct 01; 130(19):3336-3346. PubMed ID: 28966167
    [Abstract] [Full Text] [Related]

  • 13. A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome.
    Ghaboosi N, Deshaies RJ.
    Mol Biol Cell; 2007 May 01; 18(5):1953-63. PubMed ID: 17360968
    [Abstract] [Full Text] [Related]

  • 14. Bidirectional substrate shuttling between the 26S proteasome and the Cdc48 ATPase promotes protein degradation.
    Li H, Ji Z, Paulo JA, Gygi SP, Rapoport TA.
    Mol Cell; 2024 Apr 04; 84(7):1290-1303.e7. PubMed ID: 38401542
    [Abstract] [Full Text] [Related]

  • 15. Structures of the Dsk2 UBL and UBA domains and their complex.
    Lowe ED, Hasan N, Trempe JF, Fonso L, Noble ME, Endicott JA, Johnson LN, Brown NR.
    Acta Crystallogr D Biol Crystallogr; 2006 Feb 04; 62(Pt 2):177-88. PubMed ID: 16421449
    [Abstract] [Full Text] [Related]

  • 16. The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23.
    Baek GH, Kim I, Rao H.
    Proc Natl Acad Sci U S A; 2011 Aug 16; 108(33):13558-63. PubMed ID: 21807993
    [Abstract] [Full Text] [Related]

  • 17. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48.
    Williams C, Dong KC, Arkinson C, Martin A.
    Mol Cell; 2023 Mar 02; 83(5):759-769.e7. PubMed ID: 36736315
    [Abstract] [Full Text] [Related]

  • 18. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis.
    Saeki Y, Saitoh A, Toh-e A, Yokosawa H.
    Biochem Biophys Res Commun; 2002 May 10; 293(3):986-92. PubMed ID: 12051757
    [Abstract] [Full Text] [Related]

  • 19. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23.
    Rao H, Sastry A.
    J Biol Chem; 2002 Apr 05; 277(14):11691-5. PubMed ID: 11805121
    [Abstract] [Full Text] [Related]

  • 20. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1.
    Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ.
    BMC Biol; 2011 May 31; 9():33. PubMed ID: 21627799
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.