These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
363 related items for PubMed ID: 28527885
1. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, Behrendorff JB, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. Cell Syst; 2017 May 24; 4(5):505-515.e5. PubMed ID: 28527885 [Abstract] [Full Text] [Related]
2. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F, Henstra AM, Winzer K, Köpke M, Simpson SD, Minton NP. mBio; 2016 May 24; 7(3):. PubMed ID: 27222467 [Abstract] [Full Text] [Related]
3. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E. Metab Eng; 2019 May 24; 53():14-23. PubMed ID: 30641139 [Abstract] [Full Text] [Related]
4. Absolute Proteome Quantification in the Gas-Fermenting Acetogen Clostridium autoethanogenum. Valgepea K, Talbo G, Takemori N, Takemori A, Ludwig C, Mahamkali V, Mueller AP, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. mSystems; 2022 Apr 26; 7(2):e0002622. PubMed ID: 35384696 [Abstract] [Full Text] [Related]
5. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E. Metab Eng; 2017 May 26; 41():202-211. PubMed ID: 28442386 [Abstract] [Full Text] [Related]
6. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation. Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK. J Bacteriol; 2015 Sep 26; 197(18):2965-80. PubMed ID: 26148714 [Abstract] [Full Text] [Related]
7. Incorporating hydrodynamics into spatiotemporal metabolic models of bubble column gas fermentation. Li X, Griffin D, Li X, Henson MA. Biotechnol Bioeng; 2019 Jan 26; 116(1):28-40. PubMed ID: 30267585 [Abstract] [Full Text] [Related]
8. Traits of selected Clostridium strains for syngas fermentation to ethanol. Martin ME, Richter H, Saha S, Angenent LT. Biotechnol Bioeng; 2016 Mar 26; 113(3):531-9. PubMed ID: 26331212 [Abstract] [Full Text] [Related]
9. H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Valgepea K, de Souza Pinto Lemgruber R, Abdalla T, Binos S, Takemori N, Takemori A, Tanaka Y, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. Biotechnol Biofuels; 2018 Mar 26; 11():55. PubMed ID: 29507607 [Abstract] [Full Text] [Related]
10. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system. Xu H, Liang C, Yuan Z, Xu J, Hua Q, Guo Y. Enzyme Microb Technol; 2017 Jun 26; 101():24-29. PubMed ID: 28433187 [Abstract] [Full Text] [Related]
11. Redox controls metabolic robustness in the gas-fermenting acetogen Clostridium autoethanogenum. Mahamkali V, Valgepea K, de Souza Pinto Lemgruber R, Plan M, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. Proc Natl Acad Sci U S A; 2020 Jun 09; 117(23):13168-13175. PubMed ID: 32471945 [Abstract] [Full Text] [Related]
12. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii. Yi J, Huang H, Liang J, Wang R, Liu Z, Li F, Wang S. Microbiol Spectr; 2021 Oct 31; 9(2):e0095821. PubMed ID: 34643446 [Abstract] [Full Text] [Related]
13. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide. Liu ZY, Jia DC, Zhang KD, Zhu HF, Zhang Q, Jiang WH, Gu Y, Li FL. Appl Environ Microbiol; 2020 Jul 02; 86(14):. PubMed ID: 32414802 [Abstract] [Full Text] [Related]
14. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Abubackar HN, Veiga MC, Kennes C. Bioresour Technol; 2015 Jun 02; 186():122-127. PubMed ID: 25812815 [Abstract] [Full Text] [Related]
15. Acetic acid, growth rate, and mass transfer govern shifts in CO metabolism of Clostridium autoethanogenum. Elisiário MP, Van Hecke W, De Wever H, Noorman H, Straathof AJJ. Appl Microbiol Biotechnol; 2023 Sep 02; 107(17):5329-5340. PubMed ID: 37410136 [Abstract] [Full Text] [Related]
16. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Fernández-Naveira Á, Abubackar HN, Veiga MC, Kennes C. Appl Microbiol Biotechnol; 2016 Apr 02; 100(7):3361-70. PubMed ID: 26810079 [Abstract] [Full Text] [Related]
17. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL. Bioresour Technol; 2016 Jun 02; 209():56-65. PubMed ID: 26950756 [Abstract] [Full Text] [Related]
18. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. Groher A, Weuster-Botz D. J Biotechnol; 2016 Jun 20; 228():82-94. PubMed ID: 27107467 [Abstract] [Full Text] [Related]
19. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation. Chen J, Henson MA. Metab Eng; 2016 Nov 20; 38():389-400. PubMed ID: 27720802 [Abstract] [Full Text] [Related]
20. Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans. Fernández-Naveira Á, Abubackar HN, Veiga MC, Kennes C. World J Microbiol Biotechnol; 2017 Mar 20; 33(3):43. PubMed ID: 28160118 [Abstract] [Full Text] [Related] Page: [Next] [New Search]