These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


827 related items for PubMed ID: 28530207

  • 21. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV, Contreras Raggio JI, Giovanetti CM, Palza H, Burda I, Terrasi G, Weisse B, De Freitas GS, Nyström G, Vivanco JF, Aiyangar AK.
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [Abstract] [Full Text] [Related]

  • 22. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG.
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications.
    Zarei M, Hasanzadeh Azar M, Sayedain SS, Shabani Dargah M, Alizadeh R, Arab M, Askarinya A, Kaviani A, Beheshtizadeh N, Azami M.
    Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X, He Z, Liu Y, Liu X, He R, Deng G, Peng Z, Liu J, Luo Z, He X, Wang X, Wu J, Huang X, Zhang J, Wang C.
    Int J Mol Sci; 2022 Aug 27; 23(17):. PubMed ID: 36077120
    [Abstract] [Full Text] [Related]

  • 28. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H, Mohamed MGA, Montazeri MM, Kheiri S, Milani AS, Kim K, Hoorfar M.
    Acta Biomater; 2019 Sep 15; 96():149-160. PubMed ID: 31252172
    [Abstract] [Full Text] [Related]

  • 29. Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.
    Allaf RM, Rivero IV, Abidi N, Ivanov IN.
    J Biomed Mater Res B Appl Biomater; 2013 Aug 15; 101(6):1050-60. PubMed ID: 23559444
    [Abstract] [Full Text] [Related]

  • 30. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X, Du X, Li D, Ao R, Yu B, Yu B.
    J Biomater Sci Polym Ed; 2018 Oct 15; 29(14):1686-1700. PubMed ID: 29768120
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R, Rosenzweig DH, Ramirez-Garcialuna JL, Weber MH, Haglund L.
    ACS Appl Mater Interfaces; 2019 May 01; 11(17):15306-15315. PubMed ID: 30973708
    [Abstract] [Full Text] [Related]

  • 33. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application.
    Choi WJ, Hwang KS, Kwon HJ, Lee C, Kim CH, Kim TH, Heo SW, Kim JH, Lee JY.
    Mater Sci Eng C Mater Biol Appl; 2020 May 01; 110():110693. PubMed ID: 32204007
    [Abstract] [Full Text] [Related]

  • 34. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.
    Olubamiji AD, Izadifar Z, Si JL, Cooper DM, Eames BF, Chen DX.
    Biofabrication; 2016 Jun 22; 8(2):025020. PubMed ID: 27328736
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.
    He J, Xia P, Li D.
    Biofabrication; 2016 Aug 04; 8(3):035008. PubMed ID: 27490377
    [Abstract] [Full Text] [Related]

  • 38. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L, Yang G, Johnson BN, Jia X.
    Acta Biomater; 2019 Jan 15; 84():16-33. PubMed ID: 30481607
    [Abstract] [Full Text] [Related]

  • 39. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications.
    Tommasino C, Auriemma G, Sardo C, Alvarez-Lorenzo C, Garofalo E, Morello S, Falcone G, Aquino RP.
    Int J Pharm; 2023 Jun 25; 641():123093. PubMed ID: 37268029
    [Abstract] [Full Text] [Related]

  • 40. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K, Li R, Jiang W, Sun Y, Li H.
    Biochem Biophys Res Commun; 2016 Sep 02; 477(4):1085-1091. PubMed ID: 27404126
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 42.