These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


58 related items for PubMed ID: 2853367

  • 1. Involvement of cyclic AMP in the functions of granulosa and luteal cells: regulation of steroidogenesis.
    Strauss JF, Golos TG, Silavin SL, Soto EA, Takagi K.
    Prog Clin Biol Res; 1988; 267():177-200. PubMed ID: 2853367
    [Abstract] [Full Text] [Related]

  • 2. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis.
    Hall PF, Almahbobi G.
    Microsc Res Tech; 1997 Mar 15; 36(6):463-79. PubMed ID: 9142693
    [Abstract] [Full Text] [Related]

  • 3. cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation.
    Manna PR, Chandrala SP, Jo Y, Stocco DM.
    J Mol Endocrinol; 2006 Aug 15; 37(1):81-95. PubMed ID: 16901926
    [Abstract] [Full Text] [Related]

  • 4. NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis.
    Watari H, Blanchette-Mackie EJ, Dwyer NK, Sun G, Glick JM, Patel S, Neufeld EB, Pentchev PG, Strauss JF.
    Exp Cell Res; 2000 Feb 25; 255(1):56-66. PubMed ID: 10666334
    [Abstract] [Full Text] [Related]

  • 5. Ovarian follicular and luteal physiology.
    Channing CP, Schaerf FW, Anderson LD, Tsafriri A.
    Int Rev Physiol; 1980 Feb 25; 22():117-201. PubMed ID: 6248477
    [Abstract] [Full Text] [Related]

  • 6. cAMP-mediated signals as determinants for apoptosis in primary granulosa cells.
    Aharoni D, Dantes A, Oren M, Amsterdam A.
    Exp Cell Res; 1995 May 25; 218(1):271-82. PubMed ID: 7537693
    [Abstract] [Full Text] [Related]

  • 7. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells.
    Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC, Hwang JJ.
    J Endocrinol; 2007 Feb 25; 192(2):405-19. PubMed ID: 17283241
    [Abstract] [Full Text] [Related]

  • 8. Protein kinase A-independent cAMP stimulation of progesterone in a luteal cell model is tyrosine kinase dependent but phosphatidylinositol-3-kinase and mitogen-activated protein kinase independent.
    Needle E, Piparo K, Cole D, Worrall C, Whitehead I, Mahon G, Goldsmith LT.
    Biol Reprod; 2007 Jul 25; 77(1):147-55. PubMed ID: 17392500
    [Abstract] [Full Text] [Related]

  • 9. The steroidogenic acute regulatory protein (StAR): a window into the complexities of intracellular cholesterol trafficking.
    Strauss JF, Kallen CB, Christenson LK, Watari H, Devoto L, Arakane F, Kiriakidou M, Sugawara T.
    Recent Prog Horm Res; 1999 Jul 25; 54():369-94; discussion 394-5. PubMed ID: 10548884
    [Abstract] [Full Text] [Related]

  • 10. Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases.
    Sasson R, Rimon E, Dantes A, Cohen T, Shinder V, Land-Bracha A, Amsterdam A.
    Mol Hum Reprod; 2004 May 25; 10(5):299-311. PubMed ID: 15026540
    [Abstract] [Full Text] [Related]

  • 11. Lipoprotein receptor expression during luteinization of the ovarian follicle.
    Miranda-Jiménez L, Murphy BD.
    Am J Physiol Endocrinol Metab; 2007 Oct 25; 293(4):E1053-61. PubMed ID: 17698983
    [Abstract] [Full Text] [Related]

  • 12. Control of the steroidogenic machinery of the human trophoblast by cyclic AMP.
    Nulsen JC, Silavin SL, Kao LC, Ringler GE, Kliman HJ, Strauss JF.
    J Reprod Fertil Suppl; 1989 Oct 25; 37():147-53. PubMed ID: 2553955
    [Abstract] [Full Text] [Related]

  • 13. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line.
    Wu Y, Lu Y, Hu Y, Li R.
    J Cell Biochem; 2005 Nov 01; 96(4):751-9. PubMed ID: 16088961
    [Abstract] [Full Text] [Related]

  • 14. Hormonal interactions in the control of granulosa cell differentiation.
    Dorrington JH, McKeracher HL, Chan AK, Gore-Langton RE.
    J Steroid Biochem; 1983 Jul 01; 19(1A):17-32. PubMed ID: 6310232
    [Abstract] [Full Text] [Related]

  • 15. Role of cyclic AMP in the actions of luteinizing hormone on steroidogenesis in the corpus luteum.
    Williams MT, Clark MR, Ling WY, LeMaire WJ, Caron MG, Marsh JM.
    Adv Cyclic Nucleotide Res; 1978 Jul 01; 9():573-82. PubMed ID: 208397
    [No Abstract] [Full Text] [Related]

  • 16. Cholesterol transport and steroidogenesis by the corpus luteum.
    Christenson LK, Devoto L.
    Reprod Biol Endocrinol; 2003 Nov 10; 1():90. PubMed ID: 14613534
    [Abstract] [Full Text] [Related]

  • 17. Signal transduction involving cyclic AMP-dependent and cyclic AMP-independent mechanisms in the control of steroidogenesis.
    Cooke BA.
    Mol Cell Endocrinol; 1999 May 25; 151(1-2):25-35. PubMed ID: 10411317
    [Abstract] [Full Text] [Related]

  • 18. The spatial and temporal regulation of the hormonal signal. Role of mitochondria in the formation of a protein complex required for the activation of cholesterol transport and steroids synthesis.
    Poderoso C, Duarte A, Cooke M, Orlando U, Gottifredi V, Solano AR, Lemos JR, Podestá EJ.
    Mol Cell Endocrinol; 2013 May 22; 371(1-2):26-33. PubMed ID: 23357790
    [Abstract] [Full Text] [Related]

  • 19. Regulation of steroidogenic function during luteinization.
    Mori T, Fukuoka M, Takakura K, Yasuda K, Taii S.
    Prog Clin Biol Res; 1989 May 22; 294():117-28. PubMed ID: 2657775
    [No Abstract] [Full Text] [Related]

  • 20. Introduction to the symposium: cyclic AMP regulation of fuel metabolism during exercise.
    Palmer WK.
    Med Sci Sports Exerc; 1988 Dec 22; 20(6):523-4. PubMed ID: 2853266
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.