These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
348 related items for PubMed ID: 28553713
1. Enzymatic Modification of Corn Starch Influences Human Fecal Fermentation Profiles. Dura A, Rose DJ, Rosell CM. J Agric Food Chem; 2017 Jun 14; 65(23):4651-4657. PubMed ID: 28553713 [Abstract] [Full Text] [Related]
2. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Dura A, Błaszczak W, Rosell CM. Carbohydr Polym; 2014 Jan 30; 101():837-45. PubMed ID: 24299846 [Abstract] [Full Text] [Related]
3. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch. Shang Y, Chao C, Yu J, Copeland L, Wang S, Wang S. J Agric Food Chem; 2018 Jun 27; 66(25):6357-6363. PubMed ID: 29863858 [Abstract] [Full Text] [Related]
4. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Bui AT, Williams BA, Hoedt EC, Morrison M, Mikkelsen D, Gidley MJ. Food Funct; 2020 Jun 24; 11(6):5635-5646. PubMed ID: 32537617 [Abstract] [Full Text] [Related]
5. Effect of tea products on the in vitro enzymatic digestibility of starch. Zhang H, Jiang Y, Pan J, Lv Y, Liu J, Zhang S, Zhu Y. Food Chem; 2018 Mar 15; 243():345-350. PubMed ID: 29146347 [Abstract] [Full Text] [Related]
6. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. Brewer LR, Cai L, Shi YC. J Agric Food Chem; 2012 May 02; 60(17):4379-87. PubMed ID: 22480190 [Abstract] [Full Text] [Related]
7. Performance of Granular Starch with Controlled Pore Size during Hydrolysis with Digestive Enzymes. Benavent-Gil Y, Rosell CM. Plant Foods Hum Nutr; 2017 Dec 02; 72(4):353-359. PubMed ID: 28983746 [Abstract] [Full Text] [Related]
8. In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Xie Z, Wang S, Wang Z, Fu X, Huang Q, Yuan Y, Wang K, Zhang B. Carbohydr Polym; 2019 Nov 01; 223():115069. PubMed ID: 31426996 [Abstract] [Full Text] [Related]
9. Fermentation characteristics of resistant starch from maize prepared by the enzymatic method in vitro. Zhang H, Xu X, Jin Z. Int J Biol Macromol; 2012 Dec 01; 51(5):1185-8. PubMed ID: 22944007 [Abstract] [Full Text] [Related]
10. Revisiting Mechanisms Underlying Digestion of Starches. Wang Y, Chao C, Huang H, Wang S, Wang S, Wang S, Copeland L. J Agric Food Chem; 2019 Jul 24; 67(29):8212-8226. PubMed ID: 31309827 [Abstract] [Full Text] [Related]
11. Chemical Cross-Linking Controls in Vitro Fecal Fermentation Rate of High-Amylose Maize Starches and Regulates Gut Microbiota Composition. Wang S, Zhang B, Chen T, Li C, Fu X, Huang Q. J Agric Food Chem; 2019 Dec 11; 67(49):13728-13736. PubMed ID: 31617357 [Abstract] [Full Text] [Related]
12. Starch characterization and ethanol production of sorghum. Ai Y, Medic J, Jiang H, Wang D, Jane JL. J Agric Food Chem; 2011 Jul 13; 59(13):7385-92. PubMed ID: 21604720 [Abstract] [Full Text] [Related]
13. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces. Li L, Jiang H, Kim HJ, Yum MY, Campbell MR, Jane JL, White PJ, Hendrich S. J Food Sci; 2015 Sep 13; 80(9):M1997-2004. PubMed ID: 26256258 [Abstract] [Full Text] [Related]
14. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A. Appl Environ Microbiol; 2004 Aug 13; 70(8):5037-40. PubMed ID: 15294847 [Abstract] [Full Text] [Related]
15. Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation. Karim AA, Sufha EH, Zaidul IS. J Agric Food Chem; 2008 Nov 26; 56(22):10901-7. PubMed ID: 18975963 [Abstract] [Full Text] [Related]
16. Fecal Microbiota Responses to Bran Particles Are Specific to Cereal Type and In Vitro Digestion Methods That Mimic Upper Gastrointestinal Tract Passage. Tuncil YE, Thakkar RD, Arioglu-Tuncil S, Hamaker BR, Lindemann SR. J Agric Food Chem; 2018 Nov 28; 66(47):12580-12593. PubMed ID: 30406656 [Abstract] [Full Text] [Related]
17. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification. Kandil A, Li J, Vasanthan T, Bressler DC. J Agric Food Chem; 2012 Aug 29; 60(34):8444-9. PubMed ID: 22793673 [Abstract] [Full Text] [Related]
18. Influence of enzymatic hydrolysis on the properties of red rice starch. Almeida RLJ, Dos Santos Pereira T, de Andrade Freire V, Santiago ÂM, Oliveira HML, de Sousa Conrado L, de Gusmão RP. Int J Biol Macromol; 2019 Dec 01; 141():1210-1219. PubMed ID: 31521658 [Abstract] [Full Text] [Related]
19. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine faecal microbiota in vitro. Harlow BE, Donley TM, Lawrence LM, Flythe MD. J Appl Microbiol; 2015 Nov 01; 119(5):1234-44. PubMed ID: 26255645 [Abstract] [Full Text] [Related]
20. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z, Quezada-Calvillo R, Sim L, Nichols BL, Rose DR, Sterchi EE, Hamaker BR. FEBS Lett; 2007 May 29; 581(13):2381-8. PubMed ID: 17485087 [Abstract] [Full Text] [Related] Page: [Next] [New Search]