These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 28557347

  • 1. In vitro site-specific recombination mediated by the tyrosine recombinase XerA of Thermoplasma acidophilum.
    Jo M, Murayama Y, Tsutsui Y, Iwasaki H.
    Genes Cells; 2017 Jul; 22(7):646-661. PubMed ID: 28557347
    [Abstract] [Full Text] [Related]

  • 2. Evidence for a Xer/dif system for chromosome resolution in archaea.
    Cortez D, Quevillon-Cheruel S, Gribaldo S, Desnoues N, Sezonov G, Forterre P, Serre MC.
    PLoS Genet; 2010 Oct 21; 6(10):e1001166. PubMed ID: 20975945
    [Abstract] [Full Text] [Related]

  • 3. Crystal structure of Thermoplasma acidophilum XerA recombinase shows large C-shape clamp conformation and cis-cleavage mode for nucleophilic tyrosine.
    Jo CH, Kim J, Han AR, Park SY, Hwang KY, Nam KH.
    FEBS Lett; 2016 Mar 21; 590(6):848-56. PubMed ID: 26919387
    [Abstract] [Full Text] [Related]

  • 4. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae.
    Val ME, Kennedy SP, El Karoui M, Bonné L, Chevalier F, Barre FX.
    PLoS Genet; 2008 Sep 26; 4(9):e1000201. PubMed ID: 18818731
    [Abstract] [Full Text] [Related]

  • 5. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.
    Serre MC, El Arnaout T, Brooks MA, Durand D, Lisboa J, Lazar N, Raynal B, van Tilbeurgh H, Quevillon-Cheruel S.
    PLoS One; 2013 Sep 26; 8(5):e63010. PubMed ID: 23667562
    [Abstract] [Full Text] [Related]

  • 6. Xer Site Specific Recombination: Double and Single Recombinase Systems.
    Castillo F, Benmohamed A, Szatmari G.
    Front Microbiol; 2017 Sep 26; 8():453. PubMed ID: 28373867
    [Abstract] [Full Text] [Related]

  • 7. Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli.
    Hayes F, Sherratt DJ.
    J Mol Biol; 1997 Feb 28; 266(3):525-37. PubMed ID: 9067608
    [Abstract] [Full Text] [Related]

  • 8. The unconventional Xer recombination machinery of Streptococci/Lactococci.
    Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot ML, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P.
    PLoS Genet; 2007 Jul 28; 3(7):e117. PubMed ID: 17630835
    [Abstract] [Full Text] [Related]

  • 9. FtsK-dependent and -independent pathways of Xer site-specific recombination.
    Recchia GD, Aroyo M, Wolf D, Blakely G, Sherratt DJ.
    EMBO J; 1999 Oct 15; 18(20):5724-34. PubMed ID: 10523315
    [Abstract] [Full Text] [Related]

  • 10. Interactions of the site-specific recombinases XerC and XerD with the recombination site dif.
    Blakely GW, Sherratt DJ.
    Nucleic Acids Res; 1994 Dec 25; 22(25):5613-20. PubMed ID: 7838714
    [Abstract] [Full Text] [Related]

  • 11. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation.
    Barre FX, Aroyo M, Colloms SD, Helfrich A, Cornet F, Sherratt DJ.
    Genes Dev; 2000 Dec 01; 14(23):2976-88. PubMed ID: 11114887
    [Abstract] [Full Text] [Related]

  • 12. Identification and characterization of the dif Site from Bacillus subtilis.
    Sciochetti SA, Piggot PJ, Blakely GW.
    J Bacteriol; 2001 Feb 01; 183(3):1058-68. PubMed ID: 11208805
    [Abstract] [Full Text] [Related]

  • 13. Sequential strand exchange by XerC and XerD during site-specific recombination at dif.
    Blakely GW, Davidson AO, Sherratt DJ.
    J Biol Chem; 2000 Apr 07; 275(14):9930-6. PubMed ID: 10744667
    [Abstract] [Full Text] [Related]

  • 14. Circles: the replication-recombination-chromosome segregation connection.
    Barre FX, Søballe B, Michel B, Aroyo M, Robertson M, Sherratt D.
    Proc Natl Acad Sci U S A; 2001 Jul 17; 98(15):8189-95. PubMed ID: 11459952
    [Abstract] [Full Text] [Related]

  • 15. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase.
    Bigot S, Saleh OA, Lesterlin C, Pages C, El Karoui M, Dennis C, Grigoriev M, Allemand JF, Barre FX, Cornet F.
    EMBO J; 2005 Nov 02; 24(21):3770-80. PubMed ID: 16211009
    [Abstract] [Full Text] [Related]

  • 16. The TLCΦ satellite phage harbors a Xer recombination activation factor.
    Midonet C, Miele S, Paly E, Guerois R, Barre FX.
    Proc Natl Acad Sci U S A; 2019 Sep 10; 116(37):18391-18396. PubMed ID: 31420511
    [Abstract] [Full Text] [Related]

  • 17. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase.
    Yates J, Zhekov I, Baker R, Eklund B, Sherratt DJ, Arciszewska LK.
    Mol Microbiol; 2006 Mar 10; 59(6):1754-66. PubMed ID: 16553881
    [Abstract] [Full Text] [Related]

  • 18. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase.
    Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F.
    Nucleic Acids Res; 2010 Oct 10; 38(19):6477-89. PubMed ID: 20542912
    [Abstract] [Full Text] [Related]

  • 19. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD.
    Blakely GW, Davidson AO, Sherratt DJ.
    J Mol Biol; 1997 Jan 10; 265(1):30-9. PubMed ID: 8995522
    [Abstract] [Full Text] [Related]

  • 20. Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction.
    Keller AN, Xin Y, Boer S, Reinhardt J, Baker R, Arciszewska LK, Lewis PJ, Sherratt DJ, Löwe J, Grainge I.
    Sci Rep; 2016 Oct 06; 6():33357. PubMed ID: 27708355
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.