These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation. Banakis Hartl RM, Mattingly JK, Greene NT, Jenkins HA, Cass SP, Tollin DJ. Otol Neurotol; 2016 Oct; 37(9):1291-9. PubMed ID: 27579835 [Abstract] [Full Text] [Related]
7. Cochlear third window in the scala vestibuli: an animal model. Preis M, Attias J, Hadar T, Nageris BI. Otol Neurotol; 2009 Aug; 30(5):657-60. PubMed ID: 19574945 [Abstract] [Full Text] [Related]
8. Lateral Semicircular Canal Pressures During Cochlear Implant Electrode Insertion: a Possible Mechanism for Postoperative Vestibular Loss. Banakis Hartl RM, Greene NT, Jenkins HA, Cass SP, Tollin DJ. Otol Neurotol; 2018 Jul; 39(6):755-764. PubMed ID: 29889786 [Abstract] [Full Text] [Related]
9. Animal model of cochlear third window in the scala vestibuli or scala tympani. Attias J, Preis M, Shemesh R, Hadar T, Nageris BI. Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168 [Abstract] [Full Text] [Related]
10. Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants. Mattingly JK, Greene NT, Jenkins HA, Tollin DJ, Easter JR, Cass SP. Otol Neurotol; 2015 Sep; 36(8):1403-11. PubMed ID: 26164446 [Abstract] [Full Text] [Related]
11. Clinical, experimental, and theoretical investigations of the effect of superior semicircular canal dehiscence on hearing mechanisms. Rosowski JJ, Songer JE, Nakajima HH, Brinsko KM, Merchant SN. Otol Neurotol; 2004 May; 25(3):323-32. PubMed ID: 15129113 [Abstract] [Full Text] [Related]
12. Differential intracochlear sound pressure measurements in normal human temporal bones. Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski JJ. J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078 [Abstract] [Full Text] [Related]
13. Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study. Alhussaini MA, Banakis Hartl RM, Benichoux V, Tollin DJ, Jenkins HA, Greene NT. Otol Neurotol; 2018 Aug; 39(7):e585-e592. PubMed ID: 29912830 [Abstract] [Full Text] [Related]
14. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration. Eeg-Olofsson M, Stenfelt S, Taghavi H, Reinfeldt S, Håkansson B, Tengstrand T, Finizia C. Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594 [Abstract] [Full Text] [Related]
15. The effect of superior semicircular canal dehiscence on intracochlear sound pressures. Pisano DV, Niesten ME, Merchant SN, Nakajima HH. Audiol Neurootol; 2012 Dec; 17(5):338-48. PubMed ID: 22814034 [Abstract] [Full Text] [Related]
16. Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal. Chien W, Ravicz ME, Rosowski JJ, Merchant SN. Otol Neurotol; 2007 Feb; 28(2):250-7. PubMed ID: 17255894 [Abstract] [Full Text] [Related]
17. Occluded insertion loss from intracochlear pressure measurements during acoustic shock wave exposure. Anderson DA, Argo TF, Greene NT. Hear Res; 2023 Feb; 428():108669. PubMed ID: 36565603 [Abstract] [Full Text] [Related]
18. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Stieger C, Rosowski JJ, Nakajima HH. Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918 [Abstract] [Full Text] [Related]
19. Intracochlear pressure and temporal bone motion interaction under bone conduction stimulation. Dobrev I, Pfiffner F, Röösli C. Hear Res; 2023 Aug; 435():108818. PubMed ID: 37267833 [Abstract] [Full Text] [Related]
20. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation. Stieger C, Guan X, Farahmand RB, Page BF, Merchant JP, Abur D, Nakajima HH. J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386 [Abstract] [Full Text] [Related] Page: [Next] [New Search]