These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 28573380
21. Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study. Wieczorek M, Kruse S, Epp LS, Kolmogorov A, Nikolaev AN, Heinrich I, Jeltsch F, Pestryakova LA, Zibulski R, Herzschuh U. Ecology; 2017 Sep; 98(9):2343-2355. PubMed ID: 28475233 [Abstract] [Full Text] [Related]
22. Recruitment limitation of long-lived conifers: implications for climate change responses. Kroiss SJ, Hillerslambers J. Ecology; 2015 May; 96(5):1286-97. PubMed ID: 26236842 [Abstract] [Full Text] [Related]
23. Warming drives a front of white spruce establishment near western treeline, Alaska. Miller AE, Wilson TL, Sherriff RL, Walton J. Glob Chang Biol; 2017 Dec; 23(12):5509-5522. PubMed ID: 28712139 [Abstract] [Full Text] [Related]
24. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Peterson ML, Doak DF, Morris WF. Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464 [Abstract] [Full Text] [Related]
25. Life stage, not climate change, explains observed tree range shifts. Máliš F, Kopecký M, Petřík P, Vladovič J, Merganič J, Vida T. Glob Chang Biol; 2016 May; 22(5):1904-14. PubMed ID: 26725258 [Abstract] [Full Text] [Related]
26. The impact of global warming on germination and seedling emergence in Alliaria petiolata, a woodland species with dormancy loss dependent on low temperature. Footitt S, Huang Z, Ölcer-Footitt H, Clay H, Finch-Savage WE. Plant Biol (Stuttg); 2018 Jul; 20(4):682-690. PubMed ID: 29570924 [Abstract] [Full Text] [Related]
27. Increasing temperatures can improve seedling establishment in arid-adapted savanna trees. Stevens N, Seal CE, Archibald S, Bond W. Oecologia; 2014 Jul; 175(3):1029-40. PubMed ID: 24805202 [Abstract] [Full Text] [Related]
28. Trait variations of ground flora species disentangle the effects of global change and altered land-use in Swedish forests during 20 years. Hedwall PO, Brunet J. Glob Chang Biol; 2016 Dec; 22(12):4038-4047. PubMed ID: 27111238 [Abstract] [Full Text] [Related]
29. Recruitment of pioneer trees with physically dormant seeds under climate change: the case of Vachellia pennatula (Fabaceae) in semiarid environments of Mexico. Sandoval-Martínez J, Flores-Cano JA, Badano EI. J Plant Res; 2022 May; 135(3):453-463. PubMed ID: 35226225 [Abstract] [Full Text] [Related]
30. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Sánchez-Salguero R, Camarero JJ, Gutiérrez E, González Rouco F, Gazol A, Sangüesa-Barreda G, Andreu-Hayles L, Linares JC, Seftigen K. Glob Chang Biol; 2017 Jul; 23(7):2705-2719. PubMed ID: 27782362 [Abstract] [Full Text] [Related]
31. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Sittaro F, Paquette A, Messier C, Nock CA. Glob Chang Biol; 2017 Aug; 23(8):3292-3301. PubMed ID: 28165187 [Abstract] [Full Text] [Related]
32. Soil alters seedling establishment responses to climate. Ford KR, HilleRisLambers J. Ecol Lett; 2020 Jan; 23(1):140-148. PubMed ID: 31663682 [Abstract] [Full Text] [Related]
33. Evaluating the sources of potential migrant species: implications under climate change. Ibáñez I, Clark JS, Dietze MC. Ecol Appl; 2008 Oct; 18(7):1664-78. PubMed ID: 18839762 [Abstract] [Full Text] [Related]
34. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G, Ortega MJ, Gándara AM, Castejón I, Terrados J, Tomas F. Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [Abstract] [Full Text] [Related]
35. Is climate an important driver of post-European vegetation change in the Eastern United States? Nowacki GJ, Abrams MD. Glob Chang Biol; 2015 Jan; 21(1):314-34. PubMed ID: 24953341 [Abstract] [Full Text] [Related]
36. Climate isn't everything: competitive interactions and variation by life stage will also affect range shifts in a warming world. Ettinger AK, HilleRisLambers J. Am J Bot; 2013 Jul; 100(7):1344-55. PubMed ID: 23507736 [Abstract] [Full Text] [Related]
37. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures. Bernareggi G, Carbognani M, Mondoni A, Petraglia A. Ann Bot; 2016 Sep; 118(3):529-39. PubMed ID: 27390354 [Abstract] [Full Text] [Related]
38. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Rich RL, Stefanski A, Montgomery RA, Hobbie SE, Kimball BA, Reich PB. Glob Chang Biol; 2015 Jun; 21(6):2334-48. PubMed ID: 25640748 [Abstract] [Full Text] [Related]
39. Environmental effects on germination phenology of co-occurring eucalypts: implications for regeneration under climate change. Rawal DS, Kasel S, Keatley MR, Nitschke CR. Int J Biometeorol; 2015 Sep; 59(9):1237-52. PubMed ID: 25409871 [Abstract] [Full Text] [Related]
40. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn WA, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T. Glob Chang Biol; 2015 Feb; 21(2):935-46. PubMed ID: 25242342 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]