These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
347 related items for PubMed ID: 28575838
1. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ, Qiao Y, Zou L, Wu XS, Liu JH. Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [Abstract] [Full Text] [Related]
2. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Qiao Y, Qiao YJ, Zou L, Ma CX, Liu JH. Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598 [Abstract] [Full Text] [Related]
4. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Bosire EM, Blank LM, Rosenbaum MA. Appl Environ Microbiol; 2016 Aug 15; 82(16):5026-38. PubMed ID: 27287325 [Abstract] [Full Text] [Related]
5. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Zhang T, Zhang L, Su W, Gao P, Li D, He X, Zhang Y. Bioresour Technol; 2011 Jul 15; 102(14):7099-102. PubMed ID: 21596560 [Abstract] [Full Text] [Related]
6. Microbial phenazine production enhances electron transfer in biofuel cells. Rabaey K, Boon N, Höfte M, Verstraete W. Environ Sci Technol; 2005 May 01; 39(9):3401-8. PubMed ID: 15926596 [Abstract] [Full Text] [Related]
7. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7]. Luo HP, Liu GL, Zhang RD, Cao LX. Huan Jing Ke Xue; 2009 Jul 15; 30(7):2118-23. PubMed ID: 19775018 [Abstract] [Full Text] [Related]
8. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. Jo J, Price-Whelan A, Cornell WC, Dietrich LEP. J Bacteriol; 2020 Jan 29; 202(4):. PubMed ID: 31767778 [Abstract] [Full Text] [Related]
9. Initial development and structure of biofilms on microbial fuel cell anodes. Read ST, Dutta P, Bond PL, Keller J, Rabaey K. BMC Microbiol; 2010 Apr 01; 10():98. PubMed ID: 20356407 [Abstract] [Full Text] [Related]
10. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. Uria N, Ferrera I, Mas J. BMC Microbiol; 2017 Oct 18; 17(1):208. PubMed ID: 29047333 [Abstract] [Full Text] [Related]
11. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells. Saba B, Christy AD, Yu Z, Co AC, Islam R, Tuovinen OH. Bioelectrochemistry; 2017 Feb 18; 113():79-84. PubMed ID: 27816024 [Abstract] [Full Text] [Related]
12. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism. Zhang Y, Jiang J, Zhao Q, Gao Y, Wang K, Ding J, Yu H, Yao Y. Bioelectrochemistry; 2017 Oct 18; 117():48-56. PubMed ID: 28624738 [Abstract] [Full Text] [Related]
13. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, Stemp EDA, Barton JK, Tender LM, Newman DK. Cell; 2020 Aug 20; 182(4):919-932.e19. PubMed ID: 32763156 [Abstract] [Full Text] [Related]
14. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM. Bioresour Technol; 2012 Jun 20; 114():275-80. PubMed ID: 22483349 [Abstract] [Full Text] [Related]
15. An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Yong XY, Yan ZY, Shen HB, Zhou J, Wu XY, Zhang LJ, Zheng T, Jiang M, Wei P, Jia HH, Yong YC. Bioresour Technol; 2017 Oct 20; 241():1191-1196. PubMed ID: 28647320 [Abstract] [Full Text] [Related]
16. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation. Jayasinghe N, Franks A, Nevin KP, Mahadevan R. Biotechnol J; 2014 Oct 20; 9(10):1350-61. PubMed ID: 25113946 [Abstract] [Full Text] [Related]
17. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. Feng J, Qian Y, Wang Z, Wang X, Xu S, Chen K, Ouyang P. J Biotechnol; 2018 Jun 10; 275():1-6. PubMed ID: 29581032 [Abstract] [Full Text] [Related]
18. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Yong YC, Yu YY, Li CM, Zhong JJ, Song H. Biosens Bioelectron; 2011 Dec 15; 30(1):87-92. PubMed ID: 21945141 [Abstract] [Full Text] [Related]
19. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells. Wang VB, Chua SL, Cao B, Seviour T, Nesatyy VJ, Marsili E, Kjelleberg S, Givskov M, Tolker-Nielsen T, Song H, Loo JS, Yang L. PLoS One; 2013 Dec 15; 8(5):e63129. PubMed ID: 23700414 [Abstract] [Full Text] [Related]
20. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K, Okabe S. Appl Microbiol Biotechnol; 2009 Jul 15; 83(5):965-77. PubMed ID: 19404637 [Abstract] [Full Text] [Related] Page: [Next] [New Search]