These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


81 related items for PubMed ID: 2858501

  • 1. Stimulation of coronary guanylate cyclase by nicorandil (SG-75) as a mechanism of its vasodilating action.
    Schmidt K, Reich R, Kukovetz WR.
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(1):43-53. PubMed ID: 2858501
    [Abstract] [Full Text] [Related]

  • 2. Comparison of nicorandil-induced relaxation, elevations of cyclic guanosine monophosphate and stimulation of guanylate cyclase with organic nitrate esters.
    Greenberg SS, Cantor E, Ho E, Walega M.
    J Pharmacol Exp Ther; 1991 Sep; 258(3):1061-71. PubMed ID: 1679847
    [Abstract] [Full Text] [Related]

  • 3. Nicorandil: differential contribution of K+ channel opening and guanylate cyclase stimulation to its vasorelaxant effects on various endothelin-1-contracted arterial preparations. Comparison to aprikalim (RP 52891) and nitroglycerin.
    Borg C, Mondot S, Mestre M, Cavero I.
    J Pharmacol Exp Ther; 1991 Nov; 259(2):526-34. PubMed ID: 1682478
    [Abstract] [Full Text] [Related]

  • 4. Stimulation of soluble coronary arterial guanylate cyclase by SIN-1.
    Schmidt K, Kukovetz WR.
    Eur J Pharmacol; 1986 Mar 11; 122(1):75-9. PubMed ID: 2869962
    [Abstract] [Full Text] [Related]

  • 5. Cyclic GMP as possible mediator of coronary arterial relaxation by nicorandil (SG-75).
    Holzmann S.
    J Cardiovasc Pharmacol; 1983 Mar 11; 5(3):364-70. PubMed ID: 6191133
    [Abstract] [Full Text] [Related]

  • 6. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen.
    Magnon M, Durand I, Cavero I.
    J Pharmacol Exp Ther; 1994 Mar 11; 268(3):1411-8. PubMed ID: 7908056
    [Abstract] [Full Text] [Related]

  • 7. Role of K+ channel opening and stimulation of cyclic GMP in the vasorelaxant effects of nicorandil in isolated piglet pulmonary and mesenteric arteries: relative efficacy and interactions between both pathways.
    Pérez-Vizcaíno F, Cogolludo AL, Villamor E, Tamargo J.
    Br J Pharmacol; 1998 Mar 11; 123(5):847-54. PubMed ID: 9535012
    [Abstract] [Full Text] [Related]

  • 8. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine.
    Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ, Ignarro L.
    J Cyclic Nucleotide Res; 1979 Mar 11; 5(3):211-24. PubMed ID: 39089
    [Abstract] [Full Text] [Related]

  • 9. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid.
    Ignarro LJ, Harbison RG, Wood KS, Kadowitz PJ.
    J Pharmacol Exp Ther; 1986 Jun 11; 237(3):893-900. PubMed ID: 2872327
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cyclic GMP in nicorandil-induced vasodilatation and tolerance development.
    Kukovetz WR, Holzmann S.
    J Cardiovasc Pharmacol; 1987 Jun 11; 10 Suppl 8():S25-30. PubMed ID: 2447421
    [Abstract] [Full Text] [Related]

  • 12. Prolonged exposure of canine coronary arteries to a nitric oxide donor desensitizes soluble guanylate cyclase.
    Sorajja P, Cable DG, Hamner CE, Schaff HV.
    J Surg Res; 2005 Jan 11; 123(1):82-8. PubMed ID: 15652954
    [Abstract] [Full Text] [Related]

  • 13. Effects of 2-nicotinamidoethyl nitrate (nicorandil; SG-75) and its derivative on smooth muscle cells of the canine mesenteric artery.
    Inoue T, Kanmura Y, Fujisawa K, Itoh T, Kuriyama H.
    J Pharmacol Exp Ther; 1984 Jun 11; 229(3):793-802. PubMed ID: 6233418
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization.
    Kukovetz WR, Holzmann S, Braida C, Pöch G.
    J Cardiovasc Pharmacol; 1991 Apr 11; 17(4):627-33. PubMed ID: 1711631
    [Abstract] [Full Text] [Related]

  • 16. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite.
    Gruetter CA, Kadowitz PJ, Ignarro LJ.
    Can J Physiol Pharmacol; 1981 Feb 11; 59(2):150-6. PubMed ID: 6112057
    [Abstract] [Full Text] [Related]

  • 17. Dual mechanism of action of nicorandil on rabbit corpus cavernosal smooth muscle tone.
    Hsieh GC, Kolasa T, Sullivan JP, Brioni JD.
    Int J Impot Res; 2001 Aug 11; 13(4):240-6. PubMed ID: 11494082
    [Abstract] [Full Text] [Related]

  • 18. Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: possible involvement of S-nitrosothiols.
    Ignarro LJ, Gruetter CA.
    Biochim Biophys Acta; 1980 Aug 13; 631(2):221-31. PubMed ID: 6105889
    [Abstract] [Full Text] [Related]

  • 19. Effect of the new nitrate ester ITF 296 on coronary and systemic hemodynamics in the conscious dog: comparison with nitroglycerin and nicorandil.
    Ueno A, Bergamaschi M, Gromo G, Nonaka K, Mizrahi J.
    J Cardiovasc Pharmacol; 1995 Aug 13; 26 Suppl 4():S13-20. PubMed ID: 8839221
    [Abstract] [Full Text] [Related]

  • 20. Molecular mechanism of action of nicorandil.
    Kukovetz WR, Holzmann S, Pöch G.
    J Cardiovasc Pharmacol; 1992 Aug 13; 20 Suppl 3():S1-7. PubMed ID: 1282168
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.