These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 28586216
1. Catalytic Formylation of Primary and Secondary Amines with CO2 and H2 Using Abundant-Metal Catalysts. Affan MA, Jessop PG. Inorg Chem; 2017 Jun 19; 56(12):7301-7305. PubMed ID: 28586216 [Abstract] [Full Text] [Related]
3. Mechanism of iron complexes catalyzed in the N-formylation of amines with CO2 and H2: the superior performance of N-H ligand methylated complexes. Shen X, Wang W, Wang Q, Liu J, Huang F, Sun C, Yang C, Chen D. Phys Chem Chem Phys; 2021 Aug 12; 23(31):16675-16689. PubMed ID: 34337631 [Abstract] [Full Text] [Related]
7. Tailoring Active Cu2 O/Copper Interface Sites for N-Formylation of Aliphatic Primary Amines with CO2 /H2. Dai X, Li T, Wang B, Kreyenschulte C, Bartling S, Liu S, He D, Yuan H, Brückner A, Shi F, Rabeah J, Cui X. Angew Chem Int Ed Engl; 2023 May 15; 62(21):e202217380. PubMed ID: 36951593 [Abstract] [Full Text] [Related]
8. Metal-Free N-Formylation of Amines with CO2 and Hydrosilane by Nitrogen-Doped Graphene Nanosheets. Shen Q, Chen X, Tan Y, Chen J, Chen L, Tan S. ACS Appl Mater Interfaces; 2019 Oct 23; 11(42):38838-38848. PubMed ID: 31566364 [Abstract] [Full Text] [Related]
9. A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions. Chaudhary K, Trivedi M, Masram DT, Kumar A, Kumar G, Husain A, Rath NP. Dalton Trans; 2020 Mar 03; 49(9):2994-3000. PubMed ID: 32083266 [Abstract] [Full Text] [Related]
10. Highly Efficient and Selective N-Formylation of Amines with CO2 and H2 Catalyzed by Porous Organometallic Polymers. Shen Y, Zheng Q, Chen ZN, Wen D, Clark JH, Xu X, Tu T. Angew Chem Int Ed Engl; 2021 Feb 19; 60(8):4125-4132. PubMed ID: 33200851 [Abstract] [Full Text] [Related]
11. Highly Efficient Ruthenium-Catalyzed N-Formylation of Amines with H₂ and CO₂. Zhang L, Han Z, Zhao X, Wang Z, Ding K. Angew Chem Int Ed Engl; 2015 May 18; 54(21):6186-9. PubMed ID: 25850597 [Abstract] [Full Text] [Related]
14. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study. Mondal B, Neese F, Ye S. Inorg Chem; 2015 Aug 03; 54(15):7192-8. PubMed ID: 26204267 [Abstract] [Full Text] [Related]
15. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM, Helm ML. Acc Chem Res; 2015 Jul 21; 48(7):2017-26. PubMed ID: 26079983 [Abstract] [Full Text] [Related]
16. Hydrogen storage and delivery: the carbon dioxide - formic acid couple. Laurenczy G. Chimia (Aarau); 2011 Jul 21; 65(9):663-6. PubMed ID: 22026175 [Abstract] [Full Text] [Related]
18. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water. Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W. Angew Chem Int Ed Engl; 2016 Jul 25; 55(31):8966-9. PubMed ID: 27356513 [Abstract] [Full Text] [Related]
19. Direct Synthesis of Methyl Formate from CO2 With Phosphine-Based Polymer-Bound Ru Catalysts. Sun R, Kann A, Hartmann H, Besmehn A, Hausoul PJC, Palkovits R. ChemSusChem; 2019 Jul 19; 12(14):3278-3285. PubMed ID: 31034754 [Abstract] [Full Text] [Related]
20. Versatile Rh- and Ir-Based Catalysts for CO2 Hydrogenation, Formic Acid Dehydrogenation, and Transfer Hydrogenation of Quinolines. Fidalgo J, Ruiz-Castañeda M, García-Herbosa G, Carbayo A, Jalón FA, Rodríguez AM, Manzano BR, Espino G. Inorg Chem; 2018 Nov 19; 57(22):14186-14198. PubMed ID: 30395446 [Abstract] [Full Text] [Related] Page: [Next] [New Search]