These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Conway JM, McKinley BS, Seals NL, Hernandez D, Khatibi PA, Poudel S, Giannone RJ, Hettich RL, Williams-Rhaesa AM, Lipscomb GL, Adams MWW, Kelly RM. Appl Environ Microbiol; 2017 Dec 15; 83(24):. PubMed ID: 28986379 [Abstract] [Full Text] [Related]
4. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Straub CT, Khatibi PA, Wang JP, Conway JM, Williams-Rhaesa AM, Peszlen IM, Chiang VL, Adams MWW, Kelly RM. Nat Commun; 2019 Aug 07; 10(1):3548. PubMed ID: 31391460 [Abstract] [Full Text] [Related]
5. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Basen M, Rhaesa AM, Kataeva I, Prybol CJ, Scott IM, Poole FL, Adams MW. Bioresour Technol; 2014 Aug 07; 152():384-92. PubMed ID: 24316482 [Abstract] [Full Text] [Related]
8. Metabolic engineering of Caldicellulosiruptor bescii for 2,3-butanediol production from unpretreated lignocellulosic biomass and metabolic strategies for improving yields and titers. Tanwee TNN, Lipscomb GL, Vailionis JL, Zhang K, Bing RG, O'Quinn HC, Poole FL, Zhang Y, Kelly RM, Adams MWW. Appl Environ Microbiol; 2024 Jan 24; 90(1):e0195123. PubMed ID: 38131671 [Abstract] [Full Text] [Related]
10. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Laemthong T, Bing RG, Crosby JR, Manesh MJH, Adams MWW, Kelly RM. Extremophiles; 2023 Feb 21; 27(1):6. PubMed ID: 36802247 [Abstract] [Full Text] [Related]
11. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM, Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM, Klingeman DM, Poole FL, Zhang Y, Kelly RM, Adams MWW. mSystems; 2021 Jun 29; 6(3):e0134520. PubMed ID: 34060910 [Abstract] [Full Text] [Related]
12. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Li M, Pu Y, Yoo CG, Gjersing E, Decker SR, Doeppke C, Shollenberger T, Tschaplinski TJ, Engle NL, Sykes RW, Davis MF, Baxter HL, Mazarei M, Fu C, Dixon RA, Wang ZY, Neal Stewart C, Ragauskas AJ. Biotechnol Biofuels; 2017 Jun 29; 10():12. PubMed ID: 28053668 [Abstract] [Full Text] [Related]
17. Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression. Dumitrache A, Natzke J, Rodriguez M, Yee KL, Thompson OA, Poovaiah CR, Shen H, Mazarei M, Baxter HL, Fu C, Wang ZY, Biswal AK, Li G, Srivastava AC, Tang Y, Stewart CN, Dixon RA, Nelson RS, Mohnen D, Mielenz J, Brown SD, Davison BH. Plant Biotechnol J; 2017 Jun 29; 15(6):688-697. PubMed ID: 27862852 [Abstract] [Full Text] [Related]
19. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization. Zurawski JV, Conway JM, Lee LL, Simpson HJ, Izquierdo JA, Blumer-Schuette S, Nookaew I, Adams MW, Kelly RM. Appl Environ Microbiol; 2015 Oct 29; 81(20):7159-70. PubMed ID: 26253670 [Abstract] [Full Text] [Related]
20. Two-year field analysis of reduced recalcitrance transgenic switchgrass. Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng Q, Windham MT, Mann DG, Fu C, Ziebell A, Sykes RW, Rodriguez M, Davis MF, Mielenz JR, Dixon RA, Wang ZY, Stewart CN. Plant Biotechnol J; 2014 Sep 29; 12(7):914-24. PubMed ID: 24751162 [Abstract] [Full Text] [Related] Page: [Next] [New Search]