These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 28627041
1. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling. Goulding RP, Roche DM, Marwood S. Exp Physiol; 2017 Sep 01; 102(9):1158-1176. PubMed ID: 28627041 [Abstract] [Full Text] [Related]
2. Hyperoxia speeds pulmonary oxygen uptake kinetics and increases critical power during supine cycling. Goulding RP, Roche DM, Marwood S. Exp Physiol; 2019 Jul 01; 104(7):1061-1073. PubMed ID: 31054263 [Abstract] [Full Text] [Related]
3. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise. Goulding RP, Roche DM, Scott SN, Koga S, Weston PJ, Marwood S. J Appl Physiol (1985); 2020 May 01; 128(5):1299-1309. PubMed ID: 32213117 [Abstract] [Full Text] [Related]
4. Priming exercise speeds pulmonary O2 uptake kinetics during supine "work-to-work" high-intensity cycle exercise. DiMenna FJ, Wilkerson DP, Burnley M, Bailey SJ, Jones AM. J Appl Physiol (1985); 2010 Feb 01; 108(2):283-92. PubMed ID: 19959765 [Abstract] [Full Text] [Related]
5. Elevated baseline work rate slows pulmonary oxygen uptake kinetics and decreases critical power during upright cycle exercise. Goulding RP, Roche DM, Marwood S. Physiol Rep; 2018 Jul 01; 6(14):e13802. PubMed ID: 30039557 [Abstract] [Full Text] [Related]
6. Effect of Hyperoxia on Critical Power and V˙O2 Kinetics during Upright Cycling. Goulding RP, Roche DM, Marwood S. Med Sci Sports Exerc; 2020 May 01; 52(5):1041-1049. PubMed ID: 31815830 [Abstract] [Full Text] [Related]
7. Effects of "priming" exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions. Jones AM, Berger NJ, Wilkerson DP, Roberts CL. J Appl Physiol (1985); 2006 Nov 01; 101(5):1432-41. PubMed ID: 16857860 [Abstract] [Full Text] [Related]
8. Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes. Rocha J, Gildea N, O'Shea D, Green S, Egaña M. J Appl Physiol (1985); 2019 Oct 01; 127(4):1140-1149. PubMed ID: 31414958 [Abstract] [Full Text] [Related]
9. Prior heavy-intensity exercise speeds VO2 kinetics during moderate-intensity exercise in young adults. Gurd BJ, Scheuermann BW, Paterson DH, Kowalchuk JM. J Appl Physiol (1985); 2005 Apr 01; 98(4):1371-8. PubMed ID: 15579570 [Abstract] [Full Text] [Related]
10. "Work-to-Work" exercise slows pulmonary oxygen uptake kinetics, decreases critical power, and increases W' during supine cycling. Goulding RP, Roche DM, Marwood S. Physiol Rep; 2018 Nov 01; 6(21):e13916. PubMed ID: 30426722 [Abstract] [Full Text] [Related]
11. Effect of priming exercise and body position on pulmonary oxygen uptake and muscle deoxygenation kinetics during cycle exercise. Goulding RP, Marwood S, Okushima D, Poole DC, Barstow TJ, Lei TH, Kondo N, Koga S. J Appl Physiol (1985); 2020 Oct 01; 129(4):810-822. PubMed ID: 32758041 [Abstract] [Full Text] [Related]
12. Effects of priming exercise on VO2 kinetics and the power-duration relationship. Burnley M, Davison G, Baker JR. Med Sci Sports Exerc; 2011 Nov 01; 43(11):2171-9. PubMed ID: 21552161 [Abstract] [Full Text] [Related]
13. The ramp and all-out exercise test to determine critical power: validity and robustness to manipulations in body position. Goulding RP, Roche DM, Marwood S. Eur J Appl Physiol; 2021 Oct 01; 121(10):2721-2730. PubMed ID: 34143306 [Abstract] [Full Text] [Related]
14. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Schäfer LU, Hayes M, Dekerle J. Exp Physiol; 2019 Feb 01; 104(2):209-219. PubMed ID: 30468691 [Abstract] [Full Text] [Related]
15. Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity. Leyk D, Essfeld D, Hoffmann U, Wunderlich HG, Baum K, Stegemann J. Eur J Appl Physiol Occup Physiol; 1994 Feb 01; 68(1):30-5. PubMed ID: 8162920 [Abstract] [Full Text] [Related]
16. Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB. J Appl Physiol (1985); 2011 Jun 01; 110(6):1598-606. PubMed ID: 21415174 [Abstract] [Full Text] [Related]
17. Kinetics of oxygen uptake during supine and upright heavy exercise. Koga S, Shiojiri T, Shibasaki M, Kondo N, Fukuba Y, Barstow TJ. J Appl Physiol (1985); 1999 Jul 01; 87(1):253-60. PubMed ID: 10409583 [Abstract] [Full Text] [Related]
18. Effect of heavy-intensity 'priming' exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated from an elevated work rate. Nederveen JP, Keir DA, Love LK, Rossiter HB, Kowalchuk JM. Respir Physiol Neurobiol; 2017 Jan 01; 235():62-70. PubMed ID: 27693390 [Abstract] [Full Text] [Related]
19. Impaired Pulmonary V˙O2 Kinetics in Cystic Fibrosis Depend on Exercise Intensity. Saynor ZL, Barker AR, Oades PJ, Williams CA. Med Sci Sports Exerc; 2016 Nov 01; 48(11):2090-2099. PubMed ID: 27285491 [Abstract] [Full Text] [Related]
20. Alveolar oxygen uptake and femoral artery blood flow dynamics in upright and supine leg exercise in humans. MacDonald MJ, Shoemaker JK, Tschakovsky ME, Hughson RL. J Appl Physiol (1985); 1998 Nov 01; 85(5):1622-8. PubMed ID: 9804561 [Abstract] [Full Text] [Related] Page: [Next] [New Search]