These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
388 related items for PubMed ID: 28627713
1. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ. Biotechnol Bioeng; 2017 Oct; 114(10):2253-2266. PubMed ID: 28627713 [Abstract] [Full Text] [Related]
2. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor. Tsai AC, Ma T. Methods Mol Biol; 2016 Oct; 1502():77-86. PubMed ID: 27032950 [Abstract] [Full Text] [Related]
3. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Heathman TR, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ. Cytotherapy; 2016 Apr; 18(4):523-35. PubMed ID: 26971681 [Abstract] [Full Text] [Related]
4. Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Heathman TR, Glyn VA, Picken A, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ. Biotechnol Bioeng; 2015 Aug; 112(8):1696-707. PubMed ID: 25727395 [Abstract] [Full Text] [Related]
5. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. Yuan Y, Kallos MS, Hunter C, Sen A. J Tissue Eng Regen Med; 2014 Mar; 8(3):210-25. PubMed ID: 22689330 [Abstract] [Full Text] [Related]
6. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Chen AK, Chew YK, Tan HY, Reuveny S, Weng Oh SK. Cytotherapy; 2015 Feb; 17(2):163-73. PubMed ID: 25304664 [Abstract] [Full Text] [Related]
7. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Kreye S, Stahn R, Nawrath K, Goralczyk V, Zoro B, Goletz S. Biotechnol Prog; 2019 Sep; 35(5):e2832. PubMed ID: 31050211 [Abstract] [Full Text] [Related]
8. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JM, da Silva CL. Biotechnol J; 2016 Aug; 11(8):1048-59. PubMed ID: 27168373 [Abstract] [Full Text] [Related]
9. Design and development of a new ambr250® bioreactor vessel for improved cell and gene therapy applications. Rotondi M, Grace N, Betts J, Bargh N, Costariol E, Zoro B, Hewitt CJ, Nienow AW, Rafiq QA. Biotechnol Lett; 2021 May; 43(5):1103-1116. PubMed ID: 33528693 [Abstract] [Full Text] [Related]
10. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Sousa MF, Silva MM, Giroux D, Hashimura Y, Wesselschmidt R, Lee B, Roldão A, Carrondo MJ, Alves PM, Serra M. Biotechnol Prog; 2015 May; 31(6):1600-12. PubMed ID: 26289142 [Abstract] [Full Text] [Related]
12. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Lin YM, Lim JF, Lee J, Choolani M, Chan JK, Reuveny S, Oh SK. Cytotherapy; 2016 Jun; 18(6):740-53. PubMed ID: 27173750 [Abstract] [Full Text] [Related]
13. Adipose-derived stem cells (ASCs) culture in spinner flask: improving the parameters of culture in a microcarrier-based system. Simão VA, Brand H, da Silveira-Antunes RN, Fukasawa JT, Leme J, Tonso A, Ribeiro-Paes JT. Biotechnol Lett; 2023 Jul; 45(7):823-846. PubMed ID: 37171697 [Abstract] [Full Text] [Related]
14. Expansion of human mesenchymal stem cells on microcarriers. Hewitt CJ, Lee K, Nienow AW, Thomas RJ, Smith M, Thomas CR. Biotechnol Lett; 2011 Nov; 33(11):2325-35. PubMed ID: 21769648 [Abstract] [Full Text] [Related]
15. Critical attributes of human early mesenchymal stromal cell-laden microcarrier constructs for improved chondrogenic differentiation. Lin YM, Lee J, Lim JFY, Choolani M, Chan JKY, Reuveny S, Oh SKW. Stem Cell Res Ther; 2017 May 08; 8(1):93. PubMed ID: 28482913 [Abstract] [Full Text] [Related]
16. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization. Markert S, Joeris K. Biotechnol Bioeng; 2017 Jan 08; 114(1):113-121. PubMed ID: 27399304 [Abstract] [Full Text] [Related]
17. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JM. Biotechnol J; 2015 Aug 08; 10(8):1235-47. PubMed ID: 26136376 [Abstract] [Full Text] [Related]
18. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors. Surrao DC, Boon K, Borys B, Sinha S, Kumar R, Biernaskie J, Kallos MS. Biotechnol Bioeng; 2016 Dec 08; 113(12):2725-2738. PubMed ID: 27345530 [Abstract] [Full Text] [Related]
19. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Tan KY, Teo KL, Lim JF, Chen AK, Choolani M, Reuveny S, Chan J, Oh SK. Cytotherapy; 2015 Aug 08; 17(8):1152-65. PubMed ID: 26139547 [Abstract] [Full Text] [Related]
20. Manufacturing mesenchymal stromal cells in a microcarrier-microbioreactor platform can enhance cell yield and quality attributes: case study for acute respiratory distress syndrome. Krupczak B, Farruggio C, Van Vliet KJ. J Transl Med; 2024 Jul 02; 22(1):614. PubMed ID: 38956643 [Abstract] [Full Text] [Related] Page: [Next] [New Search]