These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 28628618

  • 21. Identifying vital nodes for yeast network by dynamic network entropy.
    Liu J, Wang Y, Men J, Wang H.
    BMC Bioinformatics; 2024 Jul 18; 25(1):242. PubMed ID: 39026169
    [Abstract] [Full Text] [Related]

  • 22. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE, Mjolsness E, Wold BJ.
    PLoS Comput Biol; 2006 Dec 22; 2(12):e169. PubMed ID: 17194216
    [Abstract] [Full Text] [Related]

  • 23. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network.
    Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M.
    Biotechnol Adv; 2012 Dec 22; 30(1):52-72. PubMed ID: 21821114
    [Abstract] [Full Text] [Related]

  • 24. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ, Tran LM, Liao JC.
    Bioinformatics; 2006 Aug 01; 22(15):1886-94. PubMed ID: 16766556
    [Abstract] [Full Text] [Related]

  • 25. A systematic survey of centrality measures for protein-protein interaction networks.
    Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M.
    BMC Syst Biol; 2018 Jul 31; 12(1):80. PubMed ID: 30064421
    [Abstract] [Full Text] [Related]

  • 26. Inferring network interactions within a cell.
    Carter GW.
    Brief Bioinform; 2005 Dec 31; 6(4):380-9. PubMed ID: 16420736
    [Abstract] [Full Text] [Related]

  • 27. Genomic analysis of regulatory network dynamics reveals large topological changes.
    Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M.
    Nature; 2004 Sep 16; 431(7006):308-12. PubMed ID: 15372033
    [Abstract] [Full Text] [Related]

  • 28. The FEAR network.
    Rock JM, Amon A.
    Curr Biol; 2009 Dec 15; 19(23):R1063-8. PubMed ID: 20064401
    [Abstract] [Full Text] [Related]

  • 29. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS.
    BMC Bioinformatics; 2007 Jul 13; 8():251. PubMed ID: 17626641
    [Abstract] [Full Text] [Related]

  • 30. Dynamic complex formation during the yeast cell cycle.
    de Lichtenberg U, Jensen LJ, Brunak S, Bork P.
    Science; 2005 Feb 04; 307(5710):724-7. PubMed ID: 15692050
    [Abstract] [Full Text] [Related]

  • 31. Funneled landscape leads to robustness of cell networks: yeast cell cycle.
    Wang J, Huang B, Xia X, Sun Z.
    PLoS Comput Biol; 2006 Nov 17; 2(11):e147. PubMed ID: 17112311
    [Abstract] [Full Text] [Related]

  • 32. Dynamic algorithm for inferring qualitative models of gene regulatory networks.
    Yun Z, Keong KC.
    Proc IEEE Comput Syst Bioinform Conf; 2004 Nov 17; ():353-62. PubMed ID: 16448028
    [Abstract] [Full Text] [Related]

  • 33. Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis.
    Futschik ME, Herzel H.
    Bioinformatics; 2008 Apr 15; 24(8):1063-9. PubMed ID: 18310054
    [Abstract] [Full Text] [Related]

  • 34. Regulation of Mitotic Exit in Saccharomyces cerevisiae.
    Baro B, Queralt E, Monje-Casas F.
    Methods Mol Biol; 2017 Apr 15; 1505():3-17. PubMed ID: 27826852
    [Abstract] [Full Text] [Related]

  • 35. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M, Conzen SD.
    Bioinformatics; 2005 Jan 01; 21(1):71-9. PubMed ID: 15308537
    [Abstract] [Full Text] [Related]

  • 36. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network.
    Leech CM, Flynn MJ, Arsenault HE, Ou J, Liu H, Zhu LJ, Benanti JA.
    PLoS Genet; 2020 Apr 01; 16(4):e1008600. PubMed ID: 32343701
    [Abstract] [Full Text] [Related]

  • 37. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.
    Ostrow AZ, Nellimoottil T, Knott SR, Fox CA, Tavaré S, Aparicio OM.
    PLoS One; 2014 Apr 01; 9(2):e87647. PubMed ID: 24504085
    [Abstract] [Full Text] [Related]

  • 38. How to identify essential genes from molecular networks?
    del Rio G, Koschützki D, Coello G.
    BMC Syst Biol; 2009 Oct 13; 3():102. PubMed ID: 19822021
    [Abstract] [Full Text] [Related]

  • 39. Mathematical modeling of complex regulatory networks.
    Stelling J, Gilles ED.
    IEEE Trans Nanobioscience; 2004 Sep 13; 3(3):172-9. PubMed ID: 15473069
    [Abstract] [Full Text] [Related]

  • 40. Computational discovery of gene modules and regulatory networks.
    Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, Gifford DK.
    Nat Biotechnol; 2003 Nov 13; 21(11):1337-42. PubMed ID: 14555958
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.