These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 28636314
1. Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction. Yang X, Yu D, Cao B. ACS Appl Mater Interfaces; 2017 Jul 19; 9(28):24078-24084. PubMed ID: 28636314 [Abstract] [Full Text] [Related]
5. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides. Chen Q, Yan X, Wu L, Xiao Y, Wang S, Cheng G, Zheng R, Hao Q. ACS Appl Mater Interfaces; 2021 Feb 03; 13(4):5435-5444. PubMed ID: 33492119 [Abstract] [Full Text] [Related]
6. Significant thermal rectification induced by phonon mismatch of functional groups in a single-molecule junction. Hua R, Jiang Y, Shi L, Liang S, Zhang C, Song Y, Dong RY, Dong Y. J Phys Condens Matter; 2023 Dec 27; 36(13):. PubMed ID: 38096577 [Abstract] [Full Text] [Related]
7. Thermal rectification in a polymer-functionalized single-wall carbon nanotube. Pal S, Puri IK. Nanotechnology; 2014 Aug 29; 25(34):345401. PubMed ID: 25078473 [Abstract] [Full Text] [Related]
13. Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation. Farzadian O, Yousefi F, Shafiee M, Khoeini F, Spitas C, Kostas KV. J Mol Graph Model; 2024 Jun 29; 129():108763. PubMed ID: 38555799 [Abstract] [Full Text] [Related]
14. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation. Farzadian O, Spitas C, Kostas K. Nanotechnology; 2021 Feb 18. PubMed ID: 33601345 [Abstract] [Full Text] [Related]
15. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen YP, Ruan X. Nano Lett; 2014 Feb 12; 14(2):592-6. PubMed ID: 24393070 [Abstract] [Full Text] [Related]
16. The effect of structural asymmetry on thermal rectification in nanostructures. Yang X, Xu J, Wu S, Yu D, Cao B. J Phys Condens Matter; 2018 Oct 31; 30(43):435305. PubMed ID: 30247146 [Abstract] [Full Text] [Related]
17. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach. Yousefi F, Khoeini F, Rajabpour A. Nanotechnology; 2020 Apr 24; 31(28):285707. PubMed ID: 32217831 [Abstract] [Full Text] [Related]
18. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Duan Z, Liu D, Zhang G, Li Q, Liu C, Fan S. Nanoscale; 2017 Mar 02; 9(9):3133-3139. PubMed ID: 28218327 [Abstract] [Full Text] [Related]
19. Decomposition of the Thermal Boundary Resistance across Carbon Nanotube-Graphene Junctions to Different Mechanisms. Shi J, Zhong Y, Fisher TS, Ruan X. ACS Appl Mater Interfaces; 2018 May 02; 10(17):15226-15231. PubMed ID: 29613768 [Abstract] [Full Text] [Related]
20. High-performance diodes based on black phosphorus/carbon nanomaterial heterostructures. Ye X, Zhang Y, Gao S, Zhao X, Xu K, Wang L, Jiang S, Shi F, Yang J, Cao Z, Chen C. Nanoscale Adv; 2023 May 02; 5(9):2427-2436. PubMed ID: 37143813 [Abstract] [Full Text] [Related] Page: [Next] [New Search]