These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis. Liang W, Rong Q, Lin J, Xu B. Am J Orthod Dentofacial Orthop; 2009 Mar; 135(3):316-22. PubMed ID: 19268829 [Abstract] [Full Text] [Related]
23. A validated finite element method study of orthodontic tooth movement in the human subject. Jones ML, Hickman J, Middleton J, Knox J, Volp C. J Orthod; 2001 Mar; 28(1):29-38. PubMed ID: 11254801 [Abstract] [Full Text] [Related]
24. Periodontal ligament and alveolar bone remodeling during long orthodontic tooth movement analyzed by a novel user-independent 3D-methodology. Rizk M, Niederau C, Florea A, Kiessling F, Morgenroth A, Mottaghy FM, Schneider RK, Wolf M, Craveiro RB. Sci Rep; 2023 Nov 14; 13(1):19919. PubMed ID: 37964111 [Abstract] [Full Text] [Related]
26. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I. Hemanth M, Raghuveer HP, Rani MS, Hegde C, Kabbur KJ, Vedavathi B, Chaithra D. J Contemp Dent Pract; 2015 Sep 01; 16(9):740-3. PubMed ID: 26522600 [Abstract] [Full Text] [Related]
27. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Am J Orthod Dentofacial Orthop; 2011 Jan 01; 139(1):e59-71. PubMed ID: 21195258 [Abstract] [Full Text] [Related]
28. Physical properties of root cementum: part 12. The incidence of physiologic root resorption on unerupted third molars and its comparison with orthodontically treated premolars: a microcomputed-tomography study. Deane S, Jones AS, Petocz P, Darendeliler MA. Am J Orthod Dentofacial Orthop; 2009 Aug 01; 136(2):148.e1-9; discussion 148-9. PubMed ID: 19651333 [Abstract] [Full Text] [Related]
32. Role of PHOSPHO1 in Periodontal Development and Function. Zweifler LE, Ao M, Yadav M, Kuss P, Narisawa S, Kolli TN, Wimer HF, Farquharson C, Somerman MJ, Millán JL, Foster BL. J Dent Res; 2016 Jul 01; 95(7):742-51. PubMed ID: 27016531 [Abstract] [Full Text] [Related]
35. Effect of experimental tooth movement on nerve fibres immunoreactive to calcitonin gene-related peptide, protein gene product 9.5, and blood vessel density and distribution in rats. Vandevska-Radunovic V, Kvinnsland S, Kvinnsland IH. Eur J Orthod; 1997 Oct 01; 19(5):517-29. PubMed ID: 9386338 [Abstract] [Full Text] [Related]
36. Periodontal microstructure change and tooth movement pattern under different force magnitudes in ovariectomized rats: an in-vivo microcomputed tomography study. Xu Y, Zhao T, Xu W, Ding Y. Am J Orthod Dentofacial Orthop; 2013 Jun 01; 143(6):828-36. PubMed ID: 23726333 [Abstract] [Full Text] [Related]
37. Sclerostin in periodontal ligament: Homeostatic regulator in biophysical force-induced tooth movement. Nam YS, Yang DW, Moon JS, Kang JH, Cho JH, Kim OS, Kim MS, Koh JT, Kim YJ, Kim SH. J Clin Periodontol; 2022 Sep 01; 49(9):932-944. PubMed ID: 35373367 [Abstract] [Full Text] [Related]
39. Tissue reaction to orthodontic tooth movement--a new paradigm. Melsen B. Eur J Orthod; 2001 Dec 01; 23(6):671-81. PubMed ID: 11890063 [Abstract] [Full Text] [Related]
40. An in vivo 3D micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar. Gonzales C, Hotokezaka H, Arai Y, Ninomiya T, Tominaga J, Jang I, Hotokezaka Y, Tanaka M, Yoshida N. Angle Orthod; 2009 Jul 01; 79(4):703-14. PubMed ID: 19537865 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]