These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


342 related items for PubMed ID: 2865362

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Presynaptic calcium channels and the depletion of synaptic cleft calcium ions.
    Stanley EF.
    J Neurophysiol; 2000 Jan; 83(1):477-82. PubMed ID: 10634889
    [Abstract] [Full Text] [Related]

  • 4. Calcium dependence of presynaptic calcium current and post-synaptic response at the squid giant synapse.
    Augustine GJ, Charlton MP.
    J Physiol; 1986 Dec; 381():619-40. PubMed ID: 2442355
    [Abstract] [Full Text] [Related]

  • 5. Divalent cations differentially support transmitter release at the squid giant synapse.
    Augustine GJ, Eckert R.
    J Physiol; 1984 Jan; 346():257-71. PubMed ID: 6142104
    [Abstract] [Full Text] [Related]

  • 6. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current.
    Augustine GJ.
    J Physiol; 1990 Dec; 431():343-64. PubMed ID: 1983120
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Can presynaptic depolarization release transmitter without calcium influx?
    Zucker RS, Landò L, Fogelson A.
    J Physiol (Paris); 1986 Dec; 81(4):237-45. PubMed ID: 2883310
    [Abstract] [Full Text] [Related]

  • 10. The voltage-dependence of transmitter release.
    Smith SJ, Charlton MP, Augustine GJ.
    J Physiol (Paris); 1986 Dec; 81(4):332-9. PubMed ID: 2883313
    [Abstract] [Full Text] [Related]

  • 11. Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse.
    Adams DJ, Takeda K, Umbach JA.
    J Physiol; 1985 Dec; 369():145-59. PubMed ID: 2419546
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Study of the inhibitor of the crayfish neuromuscular junction by presynaptic voltage control.
    Vyshedskiy A, Lin JW.
    J Neurophysiol; 1997 Jan; 77(1):103-15. PubMed ID: 9120551
    [Abstract] [Full Text] [Related]

  • 14. Transmission at voltage-clamped giant synapse of the squid: evidence for cooperativity of presynaptic calcium action.
    Smith SJ, Augustine GJ, Charlton MP.
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):622-5. PubMed ID: 2982166
    [Abstract] [Full Text] [Related]

  • 15. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse.
    Llinás R, Gruner JA, Sugimori M, McGuinness TL, Greengard P.
    J Physiol; 1991 May; 436():257-82. PubMed ID: 1676419
    [Abstract] [Full Text] [Related]

  • 16. Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca2+ and K+ currents.
    Shapiro E, Castellucci VF, Kandel ER.
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):629-33. PubMed ID: 6244571
    [Abstract] [Full Text] [Related]

  • 17. Calcium and transmitter release.
    Zucker RS.
    J Physiol Paris; 1993 Jan; 87(1):25-36. PubMed ID: 7905762
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S, Brodwick MS, Bittner GD.
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.