These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
980 related items for PubMed ID: 28655113
1. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill. Adhikari PL, Wong RL, Overton EB. Chemosphere; 2017 Oct; 184():939-950. PubMed ID: 28655113 [Abstract] [Full Text] [Related]
2. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill. Dincer Kırman Z, Sericano JL, Wade TL, Bianchi TS, Marcantonio F, Kolker AS. Environ Pollut; 2016 Jul; 214():101-113. PubMed ID: 27064616 [Abstract] [Full Text] [Related]
3. Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill. Wang Z, Yang C, Yang Z, Sun J, Hollebone B, Brown C, Landriault M. J Environ Monit; 2011 Nov; 13(11):3004-17. PubMed ID: 21956546 [Abstract] [Full Text] [Related]
4. Assessment of photochemical processes in marine oil spill fingerprinting. Radović JR, Aeppli C, Nelson RK, Jimenez N, Reddy CM, Bayona JM, Albaigés J. Mar Pollut Bull; 2014 Feb 15; 79(1-2):268-77. PubMed ID: 24355571 [Abstract] [Full Text] [Related]
5. Weathering patterns of polycyclic aromatic hydrocarbons contained in submerged Deepwater Horizon oil spill residues when re-exposed to sunlight. John GF, Han Y, Clement TP. Sci Total Environ; 2016 Dec 15; 573():189-202. PubMed ID: 27565528 [Abstract] [Full Text] [Related]
6. Macondo oil in northern Gulf of Mexico waters - Part 1: Assessments and forensic methods for Deepwater Horizon offshore water samples. Payne JR, Driskell WB. Mar Pollut Bull; 2018 Apr 15; 129(1):399-411. PubMed ID: 29680565 [Abstract] [Full Text] [Related]
7. Expansion of the analytical window for oil spill characterization by ultrahigh resolution mass spectrometry: beyond gas chromatography. McKenna AM, Nelson RK, Reddy CM, Savory JJ, Kaiser NK, Fitzsimmons JE, Marshall AG, Rodgers RP. Environ Sci Technol; 2013 Jul 02; 47(13):7530-9. PubMed ID: 23692145 [Abstract] [Full Text] [Related]
8. Enhancement of oil forensic methodology through the addition of polycyclic aromatic nitrogen heterocycle biomarkers for diagnostic ratios. McCallum P, Filewood T, Sawitsky J, Kwok H, Brunswick P, Yan J, Chibwe L, Tikkisetty K, Shang D. Environ Monit Assess; 2023 Feb 20; 195(3):416. PubMed ID: 36807828 [Abstract] [Full Text] [Related]
9. Advances in Chemical Analysis of Oil Spills Since the Deepwater Horizon Disaster. Wise SA, Rodgers RP, Reddy CM, Nelson RK, Kujawinski EB, Wade TL, Campiglia AD, Liu Z. Crit Rev Anal Chem; 2023 Feb 20; 53(8):1638-1697. PubMed ID: 35254870 [Abstract] [Full Text] [Related]
10. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Romero IC, Toro-Farmer G, Diercks AR, Schwing P, Muller-Karger F, Murawski S, Hollander DJ. Environ Pollut; 2017 Sep 20; 228():179-189. PubMed ID: 28535489 [Abstract] [Full Text] [Related]
11. Long-term weathering and continued oxidation of oil residues from the Deepwater Horizon spill. White HK, Wang CH, Williams PL, Findley DM, Thurston AM, Simister RL, Aeppli C, Nelson RK, Reddy CM. Mar Pollut Bull; 2016 Dec 15; 113(1-2):380-386. PubMed ID: 27751574 [Abstract] [Full Text] [Related]
12. Oil in the Gulf of Mexico after the capping of the BP/Deepwater Horizon Mississippi Canyon (MC-252) well. Kolian SR, Porter SA, Sammarco PW, Birkholz D, Cake EW, Subra WA. Environ Sci Pollut Res Int; 2015 Aug 15; 22(16):12073-82. PubMed ID: 25874429 [Abstract] [Full Text] [Related]
13. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis. Mirnaghi FS, Soucy N, Hollebone BP, Brown CE. Chemosphere; 2018 Oct 15; 208():185-195. PubMed ID: 29864709 [Abstract] [Full Text] [Related]
14. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Mulabagal V, Yin F, John GF, Hayworth JS, Clement TP. Mar Pollut Bull; 2013 May 15; 70(1-2):147-54. PubMed ID: 23523118 [Abstract] [Full Text] [Related]
15. Characterization of a crude oil weathering series by ultrahigh-resolution mass spectrometry using multiple ionization modes. Huba AK, Gardinali PR. Sci Total Environ; 2016 Sep 01; 563-564():600-10. PubMed ID: 27203365 [Abstract] [Full Text] [Related]
16. Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama's beaches. Yin F, John GF, Hayworth JS, Clement TP. Sci Total Environ; 2015 Mar 01; 508():46-56. PubMed ID: 25437952 [Abstract] [Full Text] [Related]
17. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Stout SA, Payne JR. Mar Pollut Bull; 2016 Jul 15; 108(1-2):186-202. PubMed ID: 27132992 [Abstract] [Full Text] [Related]
18. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment. Forth HP, Mitchelmore CL, Morris JM, Lipton J. Environ Toxicol Chem; 2017 Jun 15; 36(6):1450-1459. PubMed ID: 27805278 [Abstract] [Full Text] [Related]
19. A data-driven framework for defining stages of oil weathering. Cook LL, Drollette BD, Edwards MR, Benton LD, Boehm PD. Mar Pollut Bull; 2020 May 15; 154():111091. PubMed ID: 32319920 [Abstract] [Full Text] [Related]
20. Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater Horizon Spill. Olson GM, Meyer BM, Portier RJ. Chemosphere; 2016 Feb 15; 145():322-8. PubMed ID: 26692508 [Abstract] [Full Text] [Related] Page: [Next] [New Search]