These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
639 related items for PubMed ID: 28655295
21. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses. Cheng Z, Hou D, Liu J, Li X, Xie L, Ma Y, Gao J. Genome; 2018 Mar; 61(3):151-156. PubMed ID: 29338359 [Abstract] [Full Text] [Related]
22. Genome-wide characterization and gene expression analyses of ALDH gene family in response to drought stress in moso bamboo (Phyllostachys edulis). Xu J, Liu L, Huang H, Shang C, Pan H, Fan H, Han X, Qiu W, Lu Z, Qiao G, Zhuo R. Plant Physiol Biochem; 2023 Sep; 202():107954. PubMed ID: 37573795 [Abstract] [Full Text] [Related]
24. Genome-wide identification, evolution and expression analysis of the aspartic protease gene family during rapid growth of moso bamboo (Phyllostachys edulis) shoots. Wang X, Yan X, Li S, Jing Y, Gu L, Zou S, Zhang J, Liu B. BMC Genomics; 2021 Jan 10; 22(1):45. PubMed ID: 33423665 [Abstract] [Full Text] [Related]
25. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis. Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z. PLoS One; 2014 Jan 10; 9(6):e98910. PubMed ID: 24915141 [Abstract] [Full Text] [Related]
26. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Sun H, Li L, Lou Y, Zhao H, Gao Z. Mol Biol Rep; 2016 May 10; 43(5):437-50. PubMed ID: 26993482 [Abstract] [Full Text] [Related]
27. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Xie K, Wu C, Xiong L. Plant Physiol; 2006 Sep 10; 142(1):280-93. PubMed ID: 16861571 [Abstract] [Full Text] [Related]
28. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. Hou D, Zhao Z, Hu Q, Li L, Vasupalli N, Zhuo J, Zeng W, Wu A, Lin X. Tree Physiol; 2020 Dec 05; 40(12):1792-1806. PubMed ID: 32761243 [Abstract] [Full Text] [Related]
29. The BBX gene family in Moso bamboo (Phyllostachys edulis): identification, characterization and expression profiles. Ma R, Chen J, Huang B, Huang Z, Zhang Z. BMC Genomics; 2021 Jul 13; 22(1):533. PubMed ID: 34256690 [Abstract] [Full Text] [Related]
30. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J. Plant Biotechnol J; 2017 Jan 13; 15(1):82-96. PubMed ID: 27337661 [Abstract] [Full Text] [Related]
31. Genome-wide identification of AOX family genes in Moso bamboo and functional analysis of PeAOX1b_2 in drought and salinity stress tolerance. Wang X, Geng X, Bi X, Li R, Chen Y, Lu C. Plant Cell Rep; 2022 Dec 13; 41(12):2321-2339. PubMed ID: 36063182 [Abstract] [Full Text] [Related]
33. Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses. Huang Z, Jin SH, Guo HD, Zhong XJ, He J, Li X, Jiang MY, Yu XF, Long H, Ma MD, Chen QB. PeerJ; 2016 Dec 13; 4():e2620. PubMed ID: 27812419 [Abstract] [Full Text] [Related]
35. A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice. Gao Y, Liu H, Zhang K, Li F, Wu M, Xiang Y. Plant Cell Rep; 2021 Jan 13; 40(1):187-204. PubMed ID: 33098450 [Abstract] [Full Text] [Related]
36. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Sun W, Chen H, Wang J, Sun HW, Yang SK, Sang YL, Lu XB, Xu XH. Funct Integr Genomics; 2015 Jan 13; 15(1):107-20. PubMed ID: 25388988 [Abstract] [Full Text] [Related]
37. Genome-Wide Identification of NAP1 and Function Analysis in Moso Bamboo (Phyllostachys edulis). Zhang Y, Zhang J, Yang D, Jin Y, Liu X, Zhang Z, Gu L, Zhang H. Int J Mol Sci; 2022 Jun 10; 23(12):. PubMed ID: 35742936 [Abstract] [Full Text] [Related]
38. Genome-Wide Identification of the Highly Conserved INDETERMINATE DOMAIN (IDD) Zinc Finger Gene Family in Moso Bamboo (Phyllostachys edulis). Guo X, Zhou M, Chen J, Shao M, Zou L, Ying Y, Liu S. Int J Mol Sci; 2022 Nov 12; 23(22):. PubMed ID: 36430436 [Abstract] [Full Text] [Related]
39. Genome-Wide Identification of the Expansin Gene Family and Its Potential Association with Drought Stress in Moso Bamboo. Jin KM, Zhuo RY, Xu D, Wang YJ, Fan HJ, Huang BY, Qiao GR. Int J Mol Sci; 2020 Dec 14; 21(24):. PubMed ID: 33327419 [Abstract] [Full Text] [Related]
40. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. Wu M, Liu R, Gao Y, Xiong R, Shi Y, Xiang Y. Plant Physiol Biochem; 2020 Sep 14; 154():184-194. PubMed ID: 32563042 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]