These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 28656324
1. GR1-like gene expression in Lycium chinense was regulated by cadmium-induced endogenous jasmonic acids accumulation. Ma Z, An T, Zhu X, Ji J, Wang G, Guan C, Jin C, Yi L. Plant Cell Rep; 2017 Sep; 36(9):1457-1476. PubMed ID: 28656324 [Abstract] [Full Text] [Related]
2. A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. Guan C, Ji J, Jia C, Guan W, Li X, Jin C, Wang G. Plant Cell Rep; 2015 May; 34(5):871-84. PubMed ID: 25627256 [Abstract] [Full Text] [Related]
3. LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. Guan C, Ji J, Li X, Jin C, Wang G. J Genet; 2016 Dec; 95(4):875-885. PubMed ID: 27994186 [Abstract] [Full Text] [Related]
4. LcSABP2, a salicylic acid binding protein 2 gene from Lycium chinense, confers resistance to triclosan stress in Nicotiana tabacum. Guan C, Wang C, Li Q, Ji J, Wang G, Jin C, Tong Y. Ecotoxicol Environ Saf; 2019 Nov 15; 183():109516. PubMed ID: 31394375 [Abstract] [Full Text] [Related]
5. LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Guan C, Jin C, Ji J, Wang G, Li X. Biotechnol Prog; 2015 Nov 15; 31(2):358-68. PubMed ID: 25589446 [Abstract] [Full Text] [Related]
6. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco. Song X, Diao J, Ji J, Wang G, Guan C, Jin C, Wang Y. Plant Physiol Biochem; 2016 Jan 15; 98():89-100. PubMed ID: 26650932 [Abstract] [Full Text] [Related]
8. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Wu D, Ji J, Wang G, Guan C, Jin C. Plant Cell Rep; 2014 Dec 15; 33(12):2033-45. PubMed ID: 25182480 [Abstract] [Full Text] [Related]
9. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G. Plant Physiol; 2014 Feb 15; 164(2):1068-76. PubMed ID: 24326670 [Abstract] [Full Text] [Related]
16. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C. Plant Mol Biol; 2009 Mar 15; 69(5):577-92. PubMed ID: 19043665 [Abstract] [Full Text] [Related]
18. Transcription factor NtNAC56 regulates jasmonic acid-induced leaf senescence in tobacco. Chang W, Zhao H, Chen H, Jiao G, Yu J, Wang B, Xia H, Meng B, Li X, Yu M, Li S, Qian M, Fan Y, Zhang K, Lei B, Lu K. Plant Physiol; 2024 Jun 28; 195(3):1925-1940. PubMed ID: 38427921 [Abstract] [Full Text] [Related]
19. Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid. Tretner C, Huth U, Hause B. J Exp Bot; 2008 Jun 28; 59(10):2847-56. PubMed ID: 18540020 [Abstract] [Full Text] [Related]