These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


460 related items for PubMed ID: 28657749

  • 41. Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes.
    Zhang Y, Zhao M, Ning Z, Yu S, Tang N, Zhou F.
    J Agric Food Chem; 2018 Apr 25; 66(16):4208-4218. PubMed ID: 29634264
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Nanoparticulation of bovine serum albumin and poly-d-lysine through complex coacervation and encapsulation of curcumin.
    Maldonado L, Sadeghi R, Kokini J.
    Colloids Surf B Biointerfaces; 2017 Nov 01; 159():759-769. PubMed ID: 28881302
    [Abstract] [Full Text] [Related]

  • 47. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin.
    Weng Q, Cai X, Zhang F, Wang S.
    Food Chem; 2019 Feb 15; 274():796-802. PubMed ID: 30373011
    [Abstract] [Full Text] [Related]

  • 48. Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin.
    Rodriguez NJ, Hu Q, Luo Y.
    Molecules; 2019 Nov 09; 24(22):. PubMed ID: 31717559
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery.
    Sarika PR, James NR.
    Carbohydr Polym; 2016 Sep 05; 148():354-61. PubMed ID: 27185149
    [Abstract] [Full Text] [Related]

  • 56. Fabrication and characterization of novel TGase-mediated glycosylated whey protein isolate nanoparticles for curcumin delivery.
    Li D, Jiang Y, Shi J.
    Food Chem; 2024 Dec 15; 461():140957. PubMed ID: 39182336
    [Abstract] [Full Text] [Related]

  • 57. Soy Soluble Polysaccharide as a Nanocarrier for Curcumin.
    Chen FP, Ou SY, Chen Z, Tang CH.
    J Agric Food Chem; 2017 Mar 01; 65(8):1707-1714. PubMed ID: 28185459
    [Abstract] [Full Text] [Related]

  • 58. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity.
    Feng J, Xu H, Zhang L, Wang H, Liu S, Liu Y, Hou W, Li C.
    J Agric Food Chem; 2019 Jan 09; 67(1):379-390. PubMed ID: 30566342
    [Abstract] [Full Text] [Related]

  • 59. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation.
    Nguyen MH, Yu H, Kiew TY, Hadinoto K.
    Eur J Pharm Biopharm; 2015 Oct 09; 96():1-10. PubMed ID: 26170159
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.