These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 28663133
1. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA. Dev Biol; 2017 Sep 01; 429(1):213-224. PubMed ID: 28663133 [Abstract] [Full Text] [Related]
2. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Pieper M, Ahrens K, Rink E, Peter A, Schlosser G. Development; 2012 Mar 01; 139(6):1175-87. PubMed ID: 22318231 [Abstract] [Full Text] [Related]
3. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling. Watanabe T, Kanai Y, Matsukawa S, Michiue T. Genesis; 2015 Oct 01; 53(10):652-9. PubMed ID: 26249012 [Abstract] [Full Text] [Related]
4. The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus. Matsukawa S, Miwata K, Asashima M, Michiue T. Dev Biol; 2015 Mar 01; 399(1):164-176. PubMed ID: 25576027 [Abstract] [Full Text] [Related]
5. The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling. Hong CS, Saint-Jeannet JP. Dev Biol; 2018 Oct 01; 442(1):162-172. PubMed ID: 30016640 [Abstract] [Full Text] [Related]
6. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA. Dev Biol; 2012 May 15; 365(2):363-75. PubMed ID: 22425621 [Abstract] [Full Text] [Related]
7. Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA. PLoS One; 2011 May 15; 6(6):e20309. PubMed ID: 21687713 [Abstract] [Full Text] [Related]
8. Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos. Virgirinia RP, Jahan N, Okada M, Takebayashi-Suzuki K, Yoshida H, Nakamura M, Akao H, Yoshimoto Y, Fatchiyah F, Ueno N, Suzuki A. Dev Growth Differ; 2019 Aug 15; 61(6):365-377. PubMed ID: 31270814 [Abstract] [Full Text] [Related]
9. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. Wu MY, Ramel MC, Howell M, Hill CS. PLoS Biol; 2011 Feb 15; 9(2):e1000593. PubMed ID: 21358802 [Abstract] [Full Text] [Related]
10. BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM. Dev Biol; 2010 Jan 15; 337(2):335-50. PubMed ID: 19913009 [Abstract] [Full Text] [Related]
11. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES. Mech Dev; 2009 Jan 15; 126(1-2):42-55. PubMed ID: 18992330 [Abstract] [Full Text] [Related]
12. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. Takahashi C, Suzuki T, Nishida E, Kusakabe M. Int J Dev Biol; 2012 Jan 15; 56(5):393-402. PubMed ID: 22811273 [Abstract] [Full Text] [Related]
13. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction. Takebayashi-Suzuki K, Arita N, Murasaki E, Suzuki A. Mech Dev; 2007 Jan 15; 124(11-12):840-55. PubMed ID: 17950579 [Abstract] [Full Text] [Related]
14. Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus. Watanabe T, Yamamoto T, Tsukano K, Hirano S, Horikawa A, Michiue T. Development; 2018 Oct 26; 145(20):. PubMed ID: 30291163 [Abstract] [Full Text] [Related]
16. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH. PLoS Biol; 2017 Oct 26; 15(10):e2004045. PubMed ID: 29049289 [Abstract] [Full Text] [Related]
17. Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family. Fujimi TJ, Mikoshiba K, Aruga J. Dev Dyn; 2006 Dec 26; 235(12):3379-86. PubMed ID: 16871625 [Abstract] [Full Text] [Related]
18. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA. Development; 2004 Dec 26; 131(23):5871-81. PubMed ID: 15525662 [Abstract] [Full Text] [Related]
19. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation. Matsuo-Takasaki M, Matsumura M, Sasai Y. Development; 2005 Sep 26; 132(17):3885-94. PubMed ID: 16079156 [Abstract] [Full Text] [Related]
20. Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Groves AK, LaBonne C. Dev Biol; 2014 May 01; 389(1):2-12. PubMed ID: 24321819 [Abstract] [Full Text] [Related] Page: [Next] [New Search]