These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 28669907
1. Centre-surround organization of fast sensorimotor integration in human motor hand area. Dubbioso R, Raffin E, Karabanov A, Thielscher A, Siebner HR. Neuroimage; 2017 Sep; 158():37-47. PubMed ID: 28669907 [Abstract] [Full Text] [Related]
2. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. Raffin E, Pellegrino G, Di Lazzaro V, Thielscher A, Siebner HR. Neuroimage; 2015 Oct 15; 120():164-75. PubMed ID: 26188259 [Abstract] [Full Text] [Related]
3. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans. Helmich RC, Bäumer T, Siebner HR, Bloem BR, Münchau A. Exp Brain Res; 2005 Nov 15; 167(2):211-9. PubMed ID: 16034577 [Abstract] [Full Text] [Related]
4. The recent history of afferent stimulation modulates corticospinal excitability. Bonnesen MT, Fuglsang SA, Siebner HR, Christiansen L. Neuroimage; 2022 Sep 15; 258():119365. PubMed ID: 35690256 [Abstract] [Full Text] [Related]
5. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. Kesselheim J, Takemi M, Christiansen L, Karabanov AN, Siebner HR. J Neurophysiol; 2023 Feb 01; 129(2):410-420. PubMed ID: 36629338 [Abstract] [Full Text] [Related]
6. Long-latency afferent inhibition during phasic finger movement in focal hand dystonia. Pirio Richardson S, Bliem B, Voller B, Dang N, Hallett M. Exp Brain Res; 2009 Feb 01; 193(2):173-9. PubMed ID: 18936921 [Abstract] [Full Text] [Related]
7. Short-latency afferent-induced facilitation and inhibition as predictors of thermally induced variations in corticomotor excitability. Ansari Y, Tremblay F. Exp Brain Res; 2019 Jun 01; 237(6):1445-1455. PubMed ID: 30895341 [Abstract] [Full Text] [Related]
8. Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Classen J, Steinfelder B, Liepert J, Stefan K, Celnik P, Cohen LG, Hess A, Kunesch E, Chen R, Benecke R, Hallett M. Exp Brain Res; 2000 Jan 01; 130(1):48-59. PubMed ID: 10638440 [Abstract] [Full Text] [Related]
9. Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field. Tamburin S, Fiaschi A, Andreoli A, Marani S, Zanette G. Exp Brain Res; 2005 Dec 01; 167(3):362-9. PubMed ID: 16078031 [Abstract] [Full Text] [Related]
10. Short-latency afferent inhibition during selective finger movement. Voller B, St Clair Gibson A, Dambrosia J, Pirio Richardson S, Lomarev M, Dang N, Hallett M. Exp Brain Res; 2006 Feb 01; 169(2):226-31. PubMed ID: 16284755 [Abstract] [Full Text] [Related]
11. Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation. Kobayashi M, Ng J, Théoret H, Pascual-Leone A. Exp Brain Res; 2003 Mar 01; 149(1):1-8. PubMed ID: 12592498 [Abstract] [Full Text] [Related]
12. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Lorenzano C, Gilio F, Inghilleri M, Conte A, Fofi L, Manfredi M, Berardelli A. Exp Brain Res; 2002 Nov 01; 147(2):186-92. PubMed ID: 12410333 [Abstract] [Full Text] [Related]
13. The Myelin Content of the Human Precentral Hand Knob Reflects Interindividual Differences in Manual Motor Control at the Physiological and Behavioral Level. Dubbioso R, Madsen KH, Thielscher A, Siebner HR. J Neurosci; 2021 Apr 07; 41(14):3163-3179. PubMed ID: 33653698 [Abstract] [Full Text] [Related]
14. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude. Miyaguchi S, Kojima S, Sasaki R, Tamaki H, Onishi H. Neuroreport; 2017 Dec 13; 28(18):1202-1207. PubMed ID: 29064955 [Abstract] [Full Text] [Related]
15. Acute effects of muscle vibration on sensorimotor integration. Lapole T, Tindel J. Neurosci Lett; 2015 Feb 05; 587():46-50. PubMed ID: 25524409 [Abstract] [Full Text] [Related]
16. Interhemispheric sensorimotor integration; an upper limb phenomenon? Ruddy KL, Jaspers E, Keller M, Wenderoth N. Neuroscience; 2016 Oct 01; 333():104-13. PubMed ID: 27425210 [Abstract] [Full Text] [Related]
17. Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation. Sato D, Yamashiro K, Yoshida T, Onishi H, Shimoyama Y, Maruyama A. Clin Neurophysiol; 2013 Sep 01; 124(9):1846-52. PubMed ID: 23688919 [Abstract] [Full Text] [Related]
18. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS. Fischer M, Orth M. Brain Stimul; 2011 Oct 01; 4(4):202-9. PubMed ID: 22032735 [Abstract] [Full Text] [Related]
19. Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans. Devanne H, Degardin A, Tyvaert L, Bocquillon P, Houdayer E, Manceaux A, Derambure P, Cassim F. Eur J Neurosci; 2009 Aug 01; 30(3):439-48. PubMed ID: 19686433 [Abstract] [Full Text] [Related]
20. Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Dominici F, Popa T, Ginanneschi F, Mazzocchio R, Rossi A. Exp Brain Res; 2005 Aug 01; 164(4):500-4. PubMed ID: 15883808 [Abstract] [Full Text] [Related] Page: [Next] [New Search]