These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. Shivdasani MN, Luu CD, Cicione R, Fallon JB, Allen PJ, Leuenberger J, Suaning GJ, Lovell NH, Shepherd RK, Williams CE. J Neural Eng; 2010 Jun; 7(3):036008. PubMed ID: 20479521 [Abstract] [Full Text] [Related]
23. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. Nayagam DA, Williams RA, Allen PJ, Shivdasani MN, Luu CD, Salinas-LaRosa CM, Finch S, Ayton LN, Saunders AL, McPhedran M, McGowan C, Villalobos J, Fallon JB, Wise AK, Yeoh J, Xu J, Feng H, Millard R, McWade M, Thien PC, Williams CE, Shepherd RK. PLoS One; 2014 Jun; 9(5):e97182. PubMed ID: 24853376 [Abstract] [Full Text] [Related]
24. Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode. Cohen E, Agrawal A, Connors M, Hansen B, Charkhkar H, Pfefer J. J Neural Eng; 2011 Oct; 8(5):056017. PubMed ID: 21934187 [Abstract] [Full Text] [Related]
27. The influence of stimulating electrode conditions on electrically evoked potentials and resistance in suprachoroidal transretinal stimulation. Nishida K, Morimoto T, Terasawa Y, Sakaguchi H, Kamei M, Miyoshi T, Fujikado T, Nishida K. Jpn J Ophthalmol; 2023 Mar; 67(2):182-188. PubMed ID: 36626079 [Abstract] [Full Text] [Related]
28. Evaluation of a MEMS-based dual metal-layer thin-film microelectrode array for suprachoroidal electrical stimulation. Sui X, Sun J, Li L, Zhou C, Luo X, Xia N, Yan Y, Chen Y, Ren Q, Chai X. IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):524-31. PubMed ID: 22510954 [Abstract] [Full Text] [Related]
29. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat. Chowdhury V, Morley JW, Coroneo MT. J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497 [Abstract] [Full Text] [Related]
31. The influence of visual field position induced by a retinal prosthesis simulator on mobility. Endo T, Hozumi K, Hirota M, Kanda H, Morimoto T, Nishida K, Fujikado T. Graefes Arch Clin Exp Ophthalmol; 2019 Aug; 257(8):1765-1770. PubMed ID: 31147839 [Abstract] [Full Text] [Related]
32. Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis. Shivdasani MN, Sinclair NC, Dimitrov PN, Varsamidis M, Ayton LN, Luu CD, Perera T, McDermott HJ, Blamey PJ, Bionic Vision Australia Consortium. Invest Ophthalmol Vis Sci; 2014 Sep 09; 55(10):6467-81. PubMed ID: 25205858 [Abstract] [Full Text] [Related]
33. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ. Invest Ophthalmol Vis Sci; 2009 Dec 09; 50(12):5859-66. PubMed ID: 19553608 [Abstract] [Full Text] [Related]
34. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Rizzo JF, Goldbaum S, Shahin M, Denison TJ, Wyatt J. Restor Neurol Neurosci; 2004 Dec 09; 22(6):429-43. PubMed ID: 15798362 [Abstract] [Full Text] [Related]
35. Safety Studies for a 44-Channel Suprachoroidal Retinal Prosthesis: A Chronic Passive Study. Abbott CJ, Nayagam DAX, Luu CD, Epp SB, Williams RA, Salinas-LaRosa CM, Villalobos J, McGowan C, Shivdasani MN, Burns O, Leavens J, Yeoh J, Brandli AA, Thien PC, Zhou J, Feng H, Williams CE, Shepherd RK, Allen PJ. Invest Ophthalmol Vis Sci; 2018 Mar 01; 59(3):1410-1424. PubMed ID: 29625464 [Abstract] [Full Text] [Related]
36. Electrical properties of retinal-electrode interface. Shah S, Hines A, Zhou D, Greenberg RJ, Humayun MS, Weiland JD. J Neural Eng; 2007 Mar 01; 4(1):S24-9. PubMed ID: 17325413 [Abstract] [Full Text] [Related]
37. Evaluation of electrochemically treated bulk electrodes for a retinal prosthesis by examination of retinal intrinsic signals in cats. Kanda H, Mihashi T, Miyoshi T, Hirohara Y, Morimoto T, Terasawa Y, Fujikado T. Jpn J Ophthalmol; 2014 Jul 01; 58(4):309-19. PubMed ID: 24788459 [Abstract] [Full Text] [Related]
38. Access resistance of stimulation electrodes as a function of electrode proximity to the retina. Majdi JA, Minnikanti S, Peixoto N, Agrawal A, Cohen ED. J Neural Eng; 2015 Feb 01; 12(1):016006. PubMed ID: 25474329 [Abstract] [Full Text] [Related]
39. Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS). Ohta J, Tokuda T, Kagawa K, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Nakauchi K, Fujikado T, Tano Y. J Neural Eng; 2007 Mar 01; 4(1):S85-91. PubMed ID: 17325420 [Abstract] [Full Text] [Related]
40. In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation. Shah HA, Montezuma SR, Rizzo JF. Exp Eye Res; 2006 Aug 01; 83(2):247-54. PubMed ID: 16750527 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]