These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 28677226
1. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen. Liu J, Tong SM, Qiu L, Ying SH, Feng MG. Environ Microbiol; 2017 Oct; 19(10):4091-4102. PubMed ID: 28677226 [Abstract] [Full Text] [Related]
2. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Izumitsu K, Yoshimi A, Tanaka C. Eukaryot Cell; 2007 Feb; 6(2):171-81. PubMed ID: 17158737 [Abstract] [Full Text] [Related]
3. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Hagiwara D, Matsubayashi Y, Marui J, Furukawa K, Yamashino T, Kanamaru K, Kato M, Abe K, Kobayashi T, Mizuno T. Biosci Biotechnol Biochem; 2007 Mar; 71(3):844-7. PubMed ID: 17341812 [Abstract] [Full Text] [Related]
4. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Yoshimi A, Kojima K, Takano Y, Tanaka C. Eukaryot Cell; 2005 Nov; 4(11):1820-8. PubMed ID: 16278449 [Abstract] [Full Text] [Related]
5. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. Pest Manag Sci; 2001 May; 57(5):437-42. PubMed ID: 11374161 [Abstract] [Full Text] [Related]
6. Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus Beauveria bassiana. Liu J, Wang ZK, Sun HH, Ying SH, Feng MG. Environ Microbiol; 2017 May; 19(5):1808-1821. PubMed ID: 28076898 [Abstract] [Full Text] [Related]
7. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Pestic Biochem Physiol; 2019 May; 156():123-128. PubMed ID: 31027571 [Abstract] [Full Text] [Related]
8. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Dry IB, Yuan KH, Hutton DG. Fungal Genet Biol; 2004 Jan; 41(1):102-8. PubMed ID: 14643263 [Abstract] [Full Text] [Related]
9. Fungicide activity through activation of a fungal signalling pathway. Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. Mol Microbiol; 2004 Sep; 53(6):1785-96. PubMed ID: 15341655 [Abstract] [Full Text] [Related]
10. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I. Biosci Biotechnol Biochem; 2002 Oct; 66(10):2209-15. PubMed ID: 12450134 [Abstract] [Full Text] [Related]
11. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. John E, Lopez-Ruiz F, Rybak K, Mousley CJ, Oliver RP, Tan KC. Microbiology (Reading); 2016 Jun; 162(6):1023-1036. PubMed ID: 26978567 [Abstract] [Full Text] [Related]
12. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Tong SM, Feng MG. Appl Microbiol Biotechnol; 2019 Jan; 103(2):577-587. PubMed ID: 30448905 [Abstract] [Full Text] [Related]
13. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. Oiki S, Yaguchi T, Urayama SI, Hagiwara D. PLoS One; 2022 Jan; 17(1):e0262521. PubMed ID: 35100282 [Abstract] [Full Text] [Related]
14. Characterization of three mitogen-activated protein kinase kinase-like proteins in Beauveria bassiana. Liu J, Sun HH, Ying SH, Feng MG. Fungal Genet Biol; 2018 Apr; 113():24-31. PubMed ID: 29410210 [Abstract] [Full Text] [Related]
15. The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen. Liu J, Sun HH, Ying SH, Feng MG. Appl Microbiol Biotechnol; 2017 Sep; 101(18):6941-6949. PubMed ID: 28766034 [Abstract] [Full Text] [Related]
16. Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR. Appl Environ Microbiol; 2002 Feb; 68(2):532-8. PubMed ID: 11823187 [Abstract] [Full Text] [Related]