These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
679 related items for PubMed ID: 28677954
1. Advancing Drug Discovery through Enhanced Free Energy Calculations. Abel R, Wang L, Harder ED, Berne BJ, Friesner RA. Acc Chem Res; 2017 Jul 18; 50(7):1625-1632. PubMed ID: 28677954 [Abstract] [Full Text] [Related]
3. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery. Wang L, Deng Y, Wu Y, Kim B, LeBard DN, Wandschneider D, Beachy M, Friesner RA, Abel R. J Chem Theory Comput; 2017 Jan 10; 13(1):42-54. PubMed ID: 27933808 [Abstract] [Full Text] [Related]
7. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges. Chen W, Deng Y, Russell E, Wu Y, Abel R, Wang L. J Chem Theory Comput; 2018 Dec 11; 14(12):6346-6358. PubMed ID: 30375870 [Abstract] [Full Text] [Related]
9. Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10. Li Z, Huang Y, Wu Y, Chen J, Wu D, Zhan CG, Luo HB. J Med Chem; 2019 Feb 28; 62(4):2099-2111. PubMed ID: 30689375 [Abstract] [Full Text] [Related]
10. Advances in Docking. Sulimov VB, Kutov DC, Sulimov AV. Curr Med Chem; 2019 Feb 28; 26(42):7555-7580. PubMed ID: 30182836 [Abstract] [Full Text] [Related]
11. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery. Adediwura VA, Koirala K, Do HN, Wang J, Miao Y. Expert Opin Drug Discov; 2024 Jun 28; 19(6):671-682. PubMed ID: 38722032 [Abstract] [Full Text] [Related]
12. PyAutoFEP: An Automated Free Energy Perturbation Workflow for GROMACS Integrating Enhanced Sampling Methods. Carvalho Martins L, Cino EA, Ferreira RS. J Chem Theory Comput; 2021 Jul 13; 17(7):4262-4273. PubMed ID: 34142828 [Abstract] [Full Text] [Related]
13. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2. Athanasiou C, Vasilakaki S, Dellis D, Cournia Z. J Comput Aided Mol Des; 2018 Jan 13; 32(1):21-44. PubMed ID: 29119352 [Abstract] [Full Text] [Related]
15. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW, Harder E, Lin T, Abel R, McCammon JA, Wang L. J Chem Theory Comput; 2015 Jun 09; 11(6):2670-9. PubMed ID: 26085821 [Abstract] [Full Text] [Related]
17. Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors. Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R. J Chem Theory Comput; 2013 Feb 12; 9(2):1282-93. PubMed ID: 26588769 [Abstract] [Full Text] [Related]
18. Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A 2A adenosine receptor binding site. Matricon P, Ranganathan A, Warnick E, Gao ZG, Rudling A, Lambertucci C, Marucci G, Ezzati A, Jaiteh M, Dal Ben D, Jacobson KA, Carlsson J. Sci Rep; 2017 Jul 25; 7(1):6398. PubMed ID: 28743961 [Abstract] [Full Text] [Related]