These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 28680428

  • 1. The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega).
    Negri S, Lovato A, Boscaini F, Salvetti E, Torriani S, Commisso M, Danzi R, Ugliano M, Polverari A, Tornielli GB, Guzzo F.
    Front Plant Sci; 2017; 8():1002. PubMed ID: 28680428
    [Abstract] [Full Text] [Related]

  • 2. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea.
    Lovato A, Zenoni S, Tornielli GB, Colombo T, Vandelle E, Polverari A.
    Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217
    [Abstract] [Full Text] [Related]

  • 3. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B, Amrine KC, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, Cantu D.
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine.
    Simonato B, Lorenzini M, Cipriani M, Finato F, Zapparoli G.
    Foods; 2019 Dec 04; 8(12):. PubMed ID: 31817273
    [Abstract] [Full Text] [Related]

  • 8. Identification of potential protein markers of noble rot infected grapes.
    Lorenzini M, Millioni R, Franchin C, Zapparoli G, Arrigoni G, Simonato B.
    Food Chem; 2015 Jul 15; 179():170-4. PubMed ID: 25722151
    [Abstract] [Full Text] [Related]

  • 9. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard.
    Wang XJ, Tao YS, Wu Y, An RY, Yue ZY.
    Food Chem; 2017 Jul 01; 226():41-50. PubMed ID: 28254017
    [Abstract] [Full Text] [Related]

  • 10. Botrytis cinerea causes different plant responses in grape (Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence.
    Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI.
    Front Plant Sci; 2024 Jul 01; 15():1433161. PubMed ID: 39166245
    [Abstract] [Full Text] [Related]

  • 11. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines.
    Modesti M, Alfieri G, Chieffo C, Mencarelli F, Vannini A, Catalani A, Chilosi G, Bellincontro A.
    J Sci Food Agric; 2024 Mar 15; 104(4):2314-2325. PubMed ID: 37950679
    [Abstract] [Full Text] [Related]

  • 12. Physico-Chemical Characteristics and Culturable Microbial Communities of Grape Berries Change Strongly during Noble Rot Development.
    Hegyi-Kaló J, Hegyi ÁI, Geml J, Zsófi Z, Pálfi X, Váczy KZ.
    Plants (Basel); 2020 Dec 21; 9(12):. PubMed ID: 33371257
    [Abstract] [Full Text] [Related]

  • 13. Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development.
    Pogány M, Dankó T, Hegyi-Kaló J, Kámán-Tóth E, Szám DR, Hamow KÁ, Kalapos B, Kiss L, Fodor J, Gullner G, Váczy KZ, Barna B.
    Plants (Basel); 2022 Mar 24; 11(7):. PubMed ID: 35406844
    [Abstract] [Full Text] [Related]

  • 14. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS, Martinez A, Liger-Belair G, Jeandet P, Nuzillard JM, Cilindre C.
    J Exp Bot; 2012 Oct 24; 63(16):5773-85. PubMed ID: 22945941
    [Abstract] [Full Text] [Related]

  • 15. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties.
    Rolle L, Giordano M, Giacosa S, Vincenzi S, Río Segade S, Torchio F, Perrone B, Gerbi V.
    Anal Chim Acta; 2012 Jun 30; 732():105-13. PubMed ID: 22688041
    [Abstract] [Full Text] [Related]

  • 16. Draft Genome Sequence of Botrytis cinerea BcDW1, Inoculum for Noble Rot of Grape Berries.
    Blanco-Ulate B, Allen G, Powell AL, Cantu D.
    Genome Announc; 2013 May 23; 1(3):. PubMed ID: 23704180
    [Abstract] [Full Text] [Related]

  • 17. Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions.
    Salvetti E, Campanaro S, Campedelli I, Fracchetti F, Gobbi A, Tornielli GB, Torriani S, Felis GE.
    Front Microbiol; 2016 May 23; 7():937. PubMed ID: 27445999
    [Abstract] [Full Text] [Related]

  • 18. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines.
    Ployon S, Attina A, Vialaret J, Walker AS, Hirtz C, Saucier C.
    Food Chem; 2020 Jun 15; 315():126233. PubMed ID: 32018078
    [Abstract] [Full Text] [Related]

  • 19. Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines.
    Azzolini M, Tosi E, Faccio S, Lorenzini M, Torriani S, Zapparoli G.
    FEMS Yeast Res; 2013 Sep 15; 13(6):540-52. PubMed ID: 23710966
    [Abstract] [Full Text] [Related]

  • 20. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM.
    J Exp Bot; 2015 Apr 15; 66(7):1769-85. PubMed ID: 25675955
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.